

Die Logarithmusfunktion y = log x

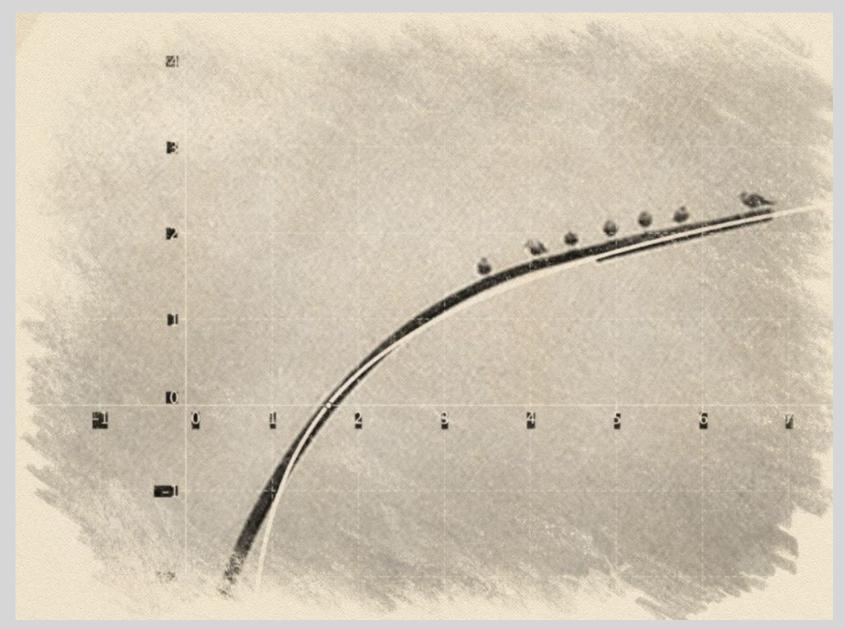
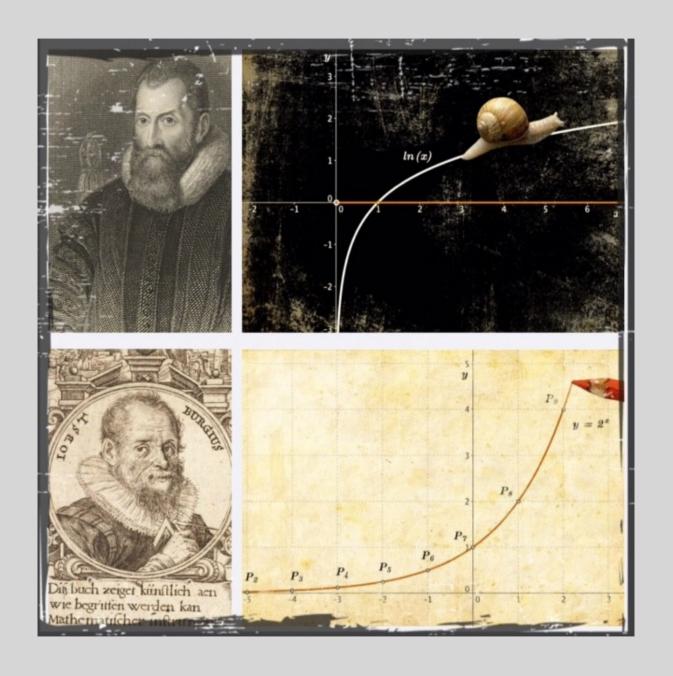


Abb. "Logarithmische" Annäherung



Voraussetzung

- Potenzen.
- Eigenschaften einer Funktion: Definitionsbereich, Wertebereich, Symmetrie, Monotonie, Umkehrfunktion.
- Exponential funktion.

Was werden wir über die Logarithmusfunktion mit der Basis 2 wissen

- der Graph der Funktion $y = \log_2 x$,
- die Eigenschaften der Funktion,
- die Logarithmusfunktion mit der Basis 2 als Umkehrfunktion der Exponential funktion mit zur Basis 2

$$y = \log_2 x$$
 as inverse of $y = 2^x$

• die Transformation der Logarithmusfunktion erkennen

$$y = \log_2 x \rightarrow y = c + \log_2(x + a), \quad a, c \in \mathbb{R}$$

Die Logarithmusfunktion als Umkehrfunktion der Exponentialfunktion

Die Exponentialfunktion zur Basis 2 ist injektive (eins-zu-eins) Funktion. Anschaulich kann man das mit Hilfe des Senkrechtentests beweisen (Abb. 1-1 auf der nächsten Seite). Jede injektive Funktion hat eine Umkehrfunktion. Die Umkehrfunktion dieser Exponentialfunktion nennt man die Logarithmusfunktion mit der Basis 2:

$$f(x) = 2^x$$
, $f^{-1}(x) = \log_2 x$

Der Graph einer Umkehrfunktion kann man zeichnen, indem man den Graphen der Funktion an der Geraden y = x abspiegelt. Abb. 1-2 stellt die Exponentialfunktion und die Logarithmusfunktion als die Umkehrfunktion dar.

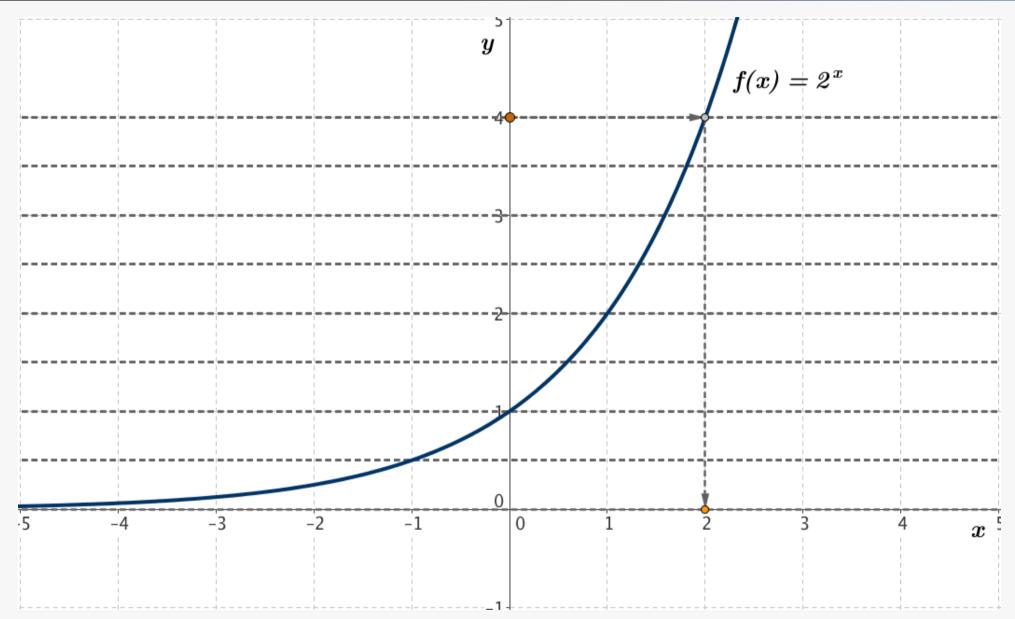


Abb. E-1: Der Test der horizontalen Geraden als grafische Beweis dafür, dass die Exponentialfunktion eine injektive Funktion ist. Hier ist die Exponentialfunktion mit der Basis 2 dargestellt

Die Logarithmusfunktion als Umkehrfunktion der Exponentialfunktion

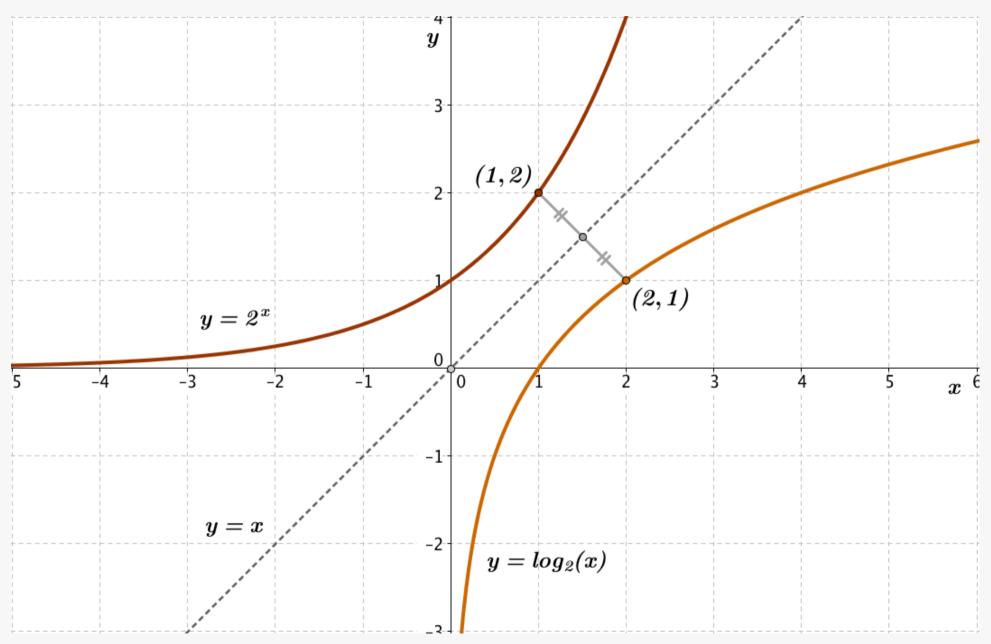


Abb. E-2: Die Exponentialfunktion mit der Basis 2 und ihre Umkehrfunktion, die Logarithmusfunktion mit der Basis 2

Logarithmusfunktion zur Basis 2: Herleitung des Graphen

Herleitung des Graphen der Logarithmusfunktion zur Basis 2 anhand der Wertetabelle.

Um die Paare (x, y) zu bestimmen, benutzen wir die Definition des Logarithmus:

$$(x, y) = (x, \log_2 x) = (2^y, y)$$

Tabelle 1	: Wertetabelle z	ur graphischei	n Darstellung o	der Logari	thmusfun	ktion $y = 1$	$\log_2 x$
y	-3	-2	-1	0	1	2	3
$x=2^y$	1/8	1/4	1/2	1	2	4	8
(x, y)	(1/8, -3)	(1/4, -2)	(1/2, -1)	(1, 0)	(2, 1)	(4, 2)	(8, 3)

Logarithmusfunktion zur Basis 2

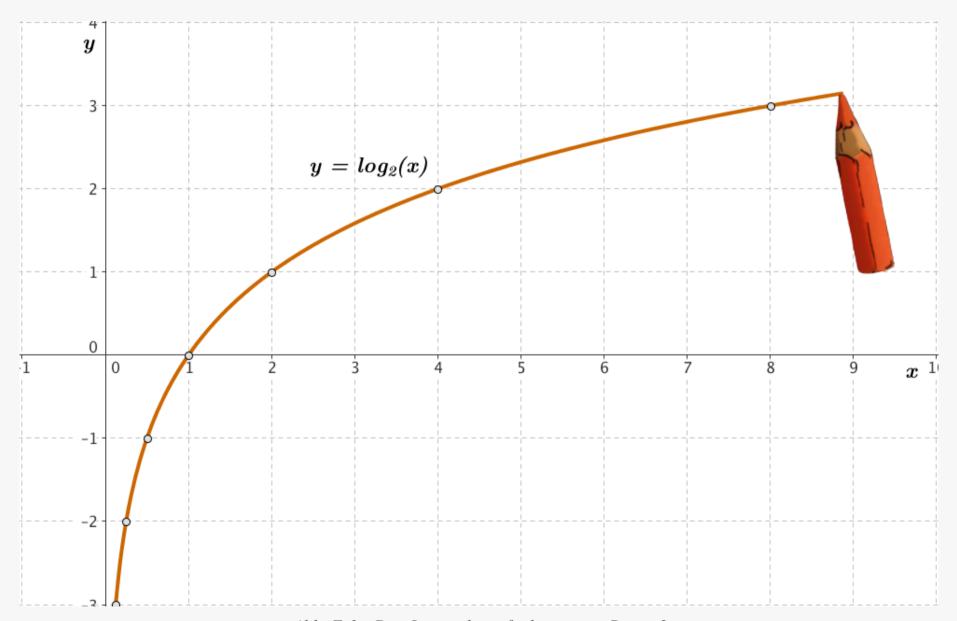


Abb. E-3: Die Logarithmusfunktion zur Basis 2

Logarithmusfunktion zur Basis 2: Aufgabe 1

Anhand des Graphen der Logarithmusfunktion zur Basis 2, Abb. E-3 auf der Seite 1-5, bestimmen Sie ihre Eigenschaften:

- Definitionsbereich (die Menge aller x-Werte, für die die Funktion definiert ist)
- Wertebereich (die Menge aller y-Werte der Funktion)
- Monotonie (ist die Logarithmusfunktion zur Basis 2 eine fallende oder eine wachsende Funktion)
- Symmetrie (Bestimmen Sie ob die Funktion eine Achsen- oder eine Punktsymmetrie besitzt)
- Achsenschnittpunkte (die Schnittpunkte mit den x- oder y-Achsen)
- Asymptote (eine Gerade, der sich der Graph einer Funktion annähert, die er aber niemals erreicht)

Eigenschaften der Logarithmusfunktion zur Basis 2

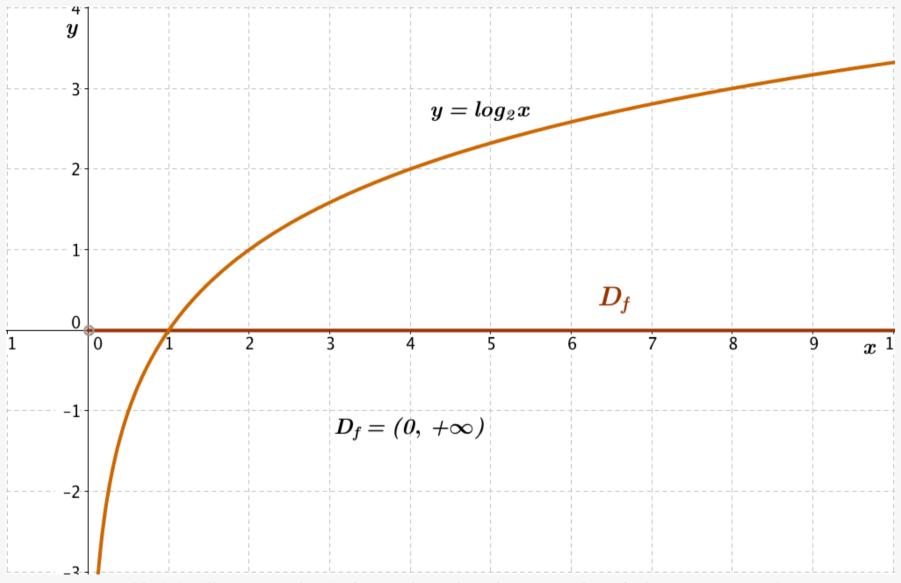


Abb. 1-1: Illustration des Definitionsbereiches der Logarithmusfunktion zur Basis 2

Der <u>Definitionsbereich</u>, die Menge aller x-Werte, die die Funktion annehmen kann, sind alle positiven reellen Zahlen: $D_f = (0, +\infty)$.

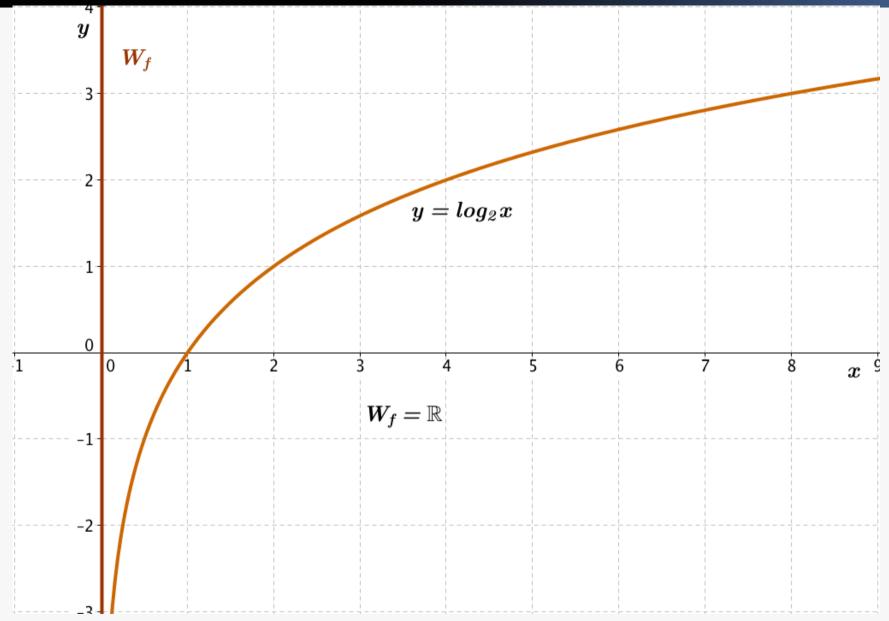


Abb. 1-2: Illustration des Wertebereiches der Logarithmusfunktion zur Basis 2

Der Wertebereich, die Menge aller *y*-Werte der Funktion, ist die Menge aller reellen Zahlen.

Vorkurs, Mathematik

Eigenschaften der Logarithmusfunktion zur Basis 2

$$y = \log_2 x$$

Die graphische Darstellung der Logarithmusfunktion zeigt, dass sie eine <u>monoton wachsende</u> Funktion ist, was man auch algebraisch beweisen kann:

$$x_1 = 2$$
, $y_1 = \log_2 x_1 = \log_2 2 = 1$
 $x_2 = 4$, $y_2 = \log_2 x_2 = \log_2 4 = 2$
 $x_2 > x_1$, $y_2 > y_1$

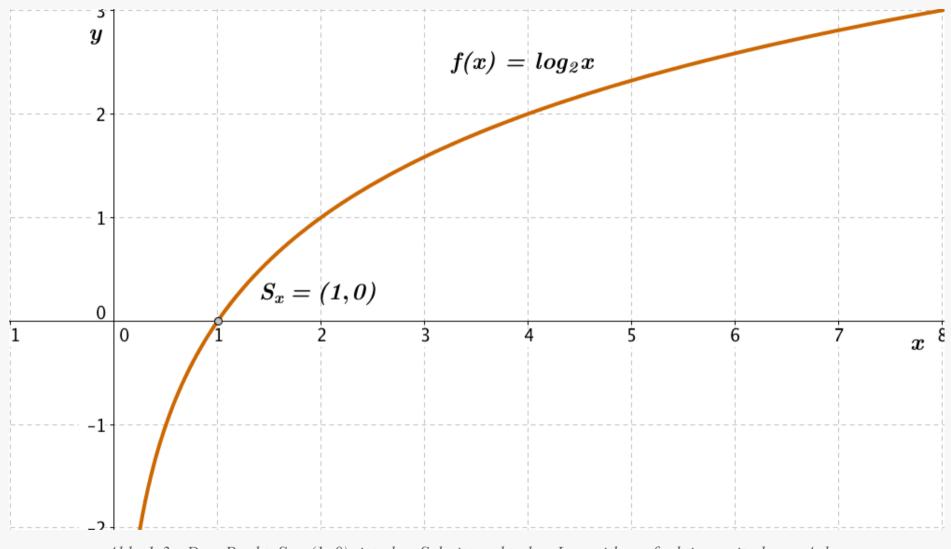


Abb. 1-3: Der Punkt S = (1, 0) ist der Schnittpunkt der Logarithmusfunktion mit der x-Achse

Die Logarithmusfunktion besitzt keine Symmetrie, hat den Schnittpunkt (1,0) mit der x-Achse.

Eigenschaften der Logarithmusfunktion zur Basis 2

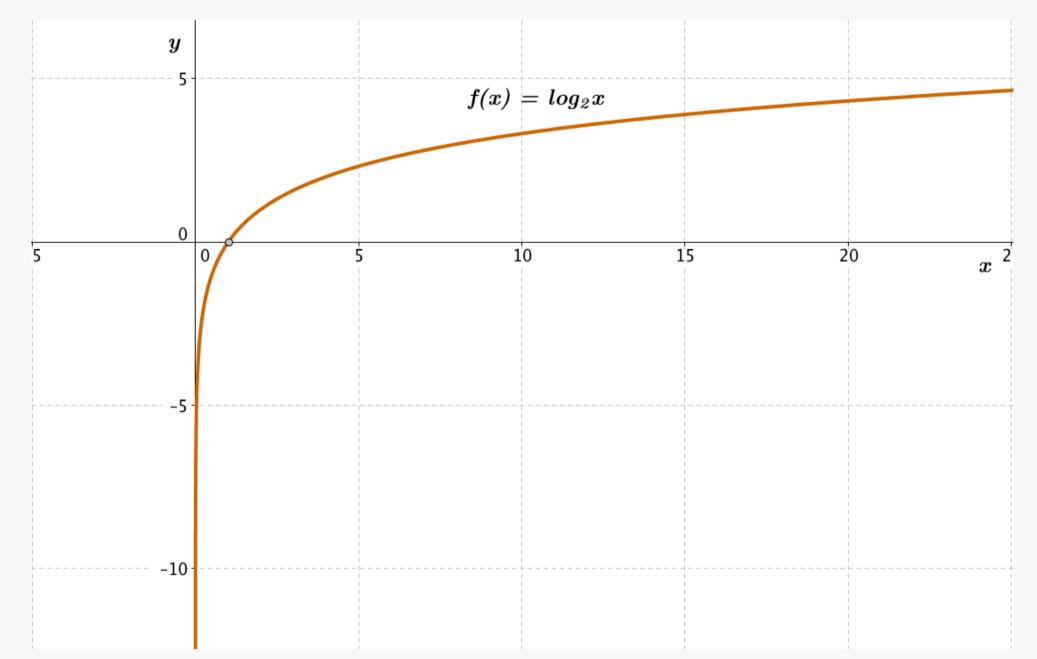


Abb. 1-4: Die y-Achse ist eine vertikale Asymptote

Logarithmusfunktion zur Basis 2: Aufgabe 2

Aufgabe 2:

Was bewirkt der reelle Parameter a in der Funktion $y = \log_2(x + a)$?

Hinweis:

Betrachten Sie beide Fälle: Der Parameter a hat einen positiven Wert, z.B. a = 3, und einen negativen Wert, z.B. a = -2.

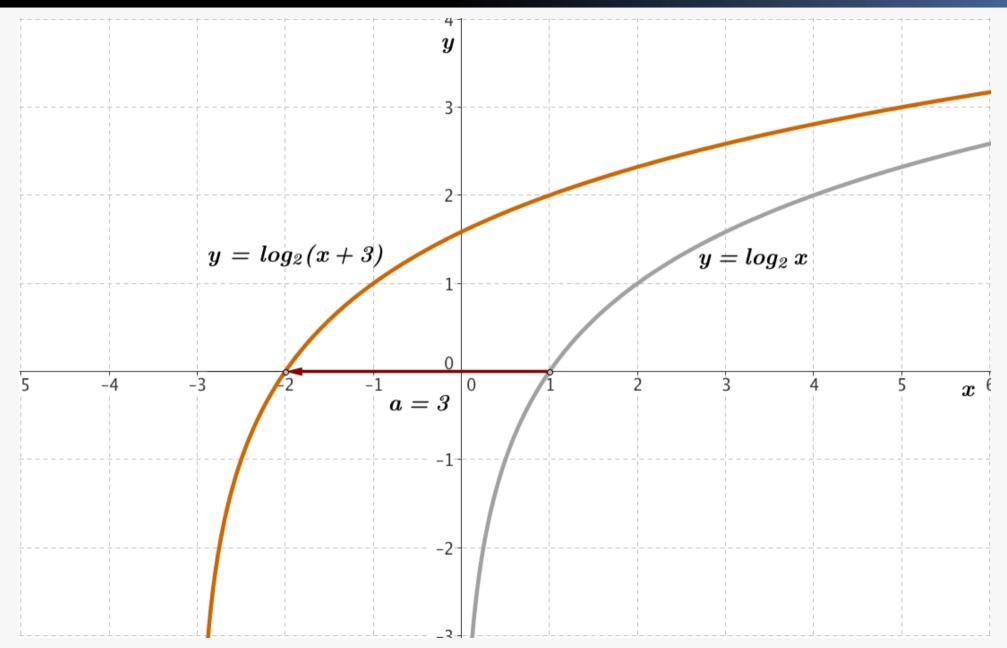


Abb. 2-1: Das Ändern des Argumenten der Grundfunktion $y = \log x$ durch Addieren einer positiven Konstante 3, d.h $y = \log (x + 3)$, wirkt graphisch als Verschiebung des Graphen der Grundfunktion um 3 Einheiten nach links

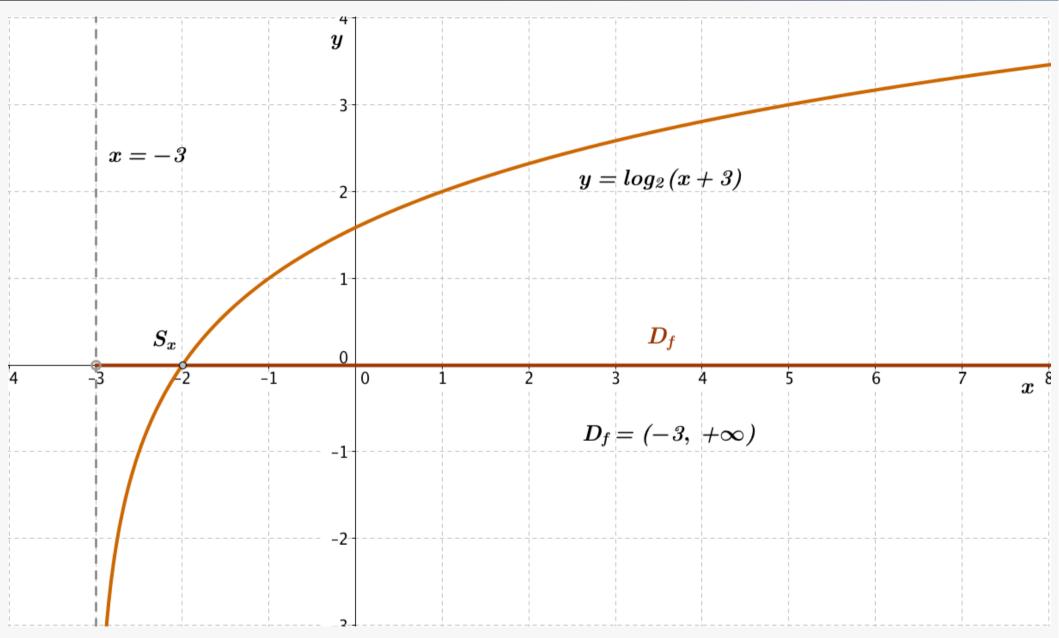


Abb. 2-2: Der Definitionsbereich der Logarithmusfunktion y = log(x + 3) zur Basis 2, der Schnittpunkt (-2, 0) mit der x-Achse, die vertikale Asymptote x = -3

Eine positive Zahl a im Argument der Logarithmusfunktion verschiebt den Graphen der Funktion um a Einheiten nach links.

Dabei ändert sich der Definitionsbereich und der Schnittpunkt des Graphen mit der x-Achse. Zum Beispiel, der Definitionsbereich der Funktion

$$y = \log_2(x+3), \qquad a = 3$$

ist ein offenes Intervall $D = (-3, +\infty)$. Der Wertebereich bleibt unverändert.

Der Schnittpunkt der Funktion mit der x-Achse ist der Punkt (-2, 0). Die x-Koordinate des Schnittpunktes bestimmt man durch die Bedingung, dass das Argument der Logarithmusfunktion gleich 1 wird, dabei ist y = 0:

$$\log_b 1 = 0, \qquad b > 0$$

$$x_S + 3 = 1$$
, $x_S = -2$, $y_S = 0$, $S_x = (x_S, 0) = (-2, 0)$

Die vertikale Asymptote der Logarithmusfunktion y = log(x + a) ist durch die Gleichgung x + a = 0 bestimmt:

$$x_v + 3 = 0, \qquad x_v = -3$$

Also die zur y-Achse parallele Gerade x = -3 ist die vertikale Asymptote der Funktion y = log(x + a).

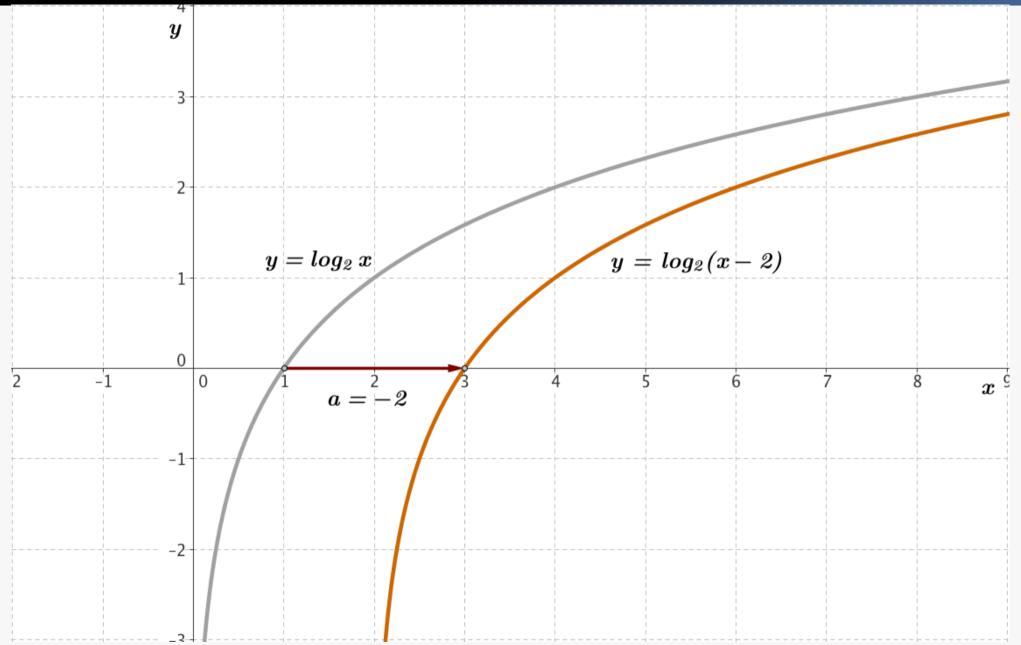


Abb. 2-3: Das Ändern des Argumenten der Grundfunktion $y = \log x$ durch Addieren einer negativen Konstante 2, d.h $y = \log (x - 2)$, wirkt graphisch als Verschiebung des Graphen der Grundfunktion um 2 Einheiten nach links

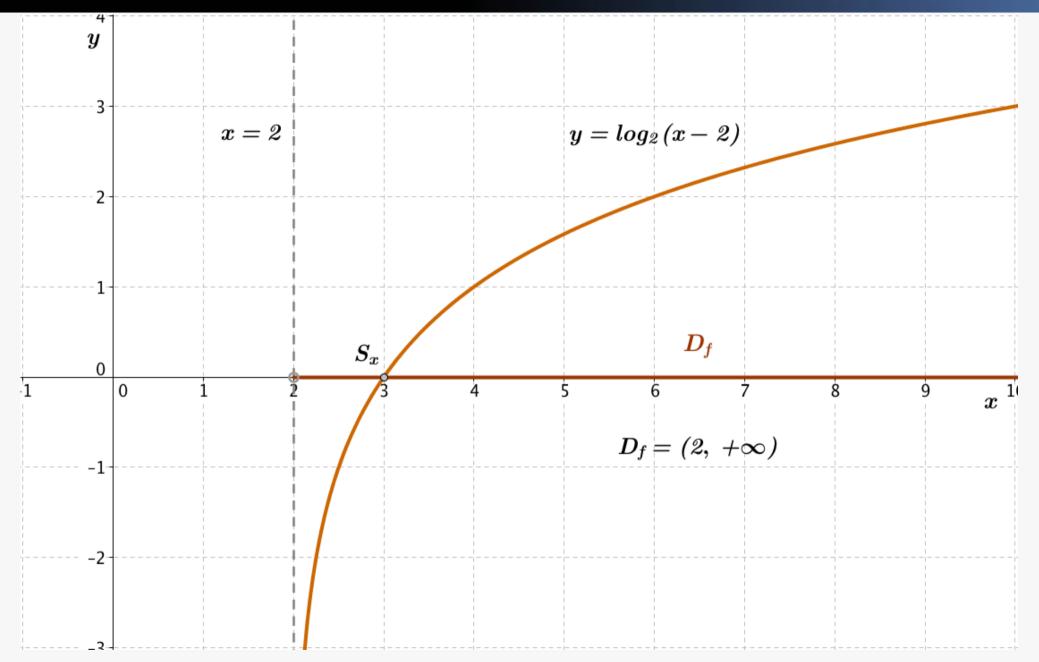


Abb. 2-4: Der Definitionsbereich der Logarithmusfunktion y = log(x-2) zur Basis 2, der Schnittpunkt (3, 0) mit der x-Achse, die vertikale Asymptote x = 2

Eine negative Zahl a im Argument der Logarithmusfunktion verschiebt den Graph der Funktion um a Einheiten nach rechts.

Dabei ändert sich der Definitionsbereich und der Schnittpunkt des Graphen mit der x-Achse. Zum Beispiel, der Definitionsbereich der Funktion

$$a = -2, \qquad y = \log_2(x - 2)$$

ist ein offenes Intervall $D = (2, +\infty)$. Der Wertebereich bleibt unverändert.

Der Schnittpunkt der Funktion mit der x-Achse ist der Punkt (3, 0). Die x-Koordinate des Schnittpunktes bestimmt man durch die Gleichung:

$$x_S - 2 = 1$$
, $x_S = 3$, $y_S = 0$, $S_x = (x_S, 0) = (3, 0)$

Die vertikale Asymptote der Logarithmusfunktion y = log(x - 2) ist durch die Gleichgung x - 2 = 0 bestimmt:

$$x_{v} - 2 = 0, \qquad x_{v} = 2$$

Also die zur y-Achse parallele Gerade x = 2 ist die vertikale Asymptote der Funktion y = log (x - 2).

Zusammenfassung: Lösung 2

Der additive Parameter a im Argument der Logarithmusfunktion y = log(x + a) entspricht dem horizontalen Verschiebung des Graphen der Funktion längst der x-Achse. Ist der Parameter a positiv, wird der Graph um a Einheiten nach links verschoben. Ist der Parameter a negativ, wird der Graph um a Einheiten nach rechts verschoben. Durch solche Verschiebung ändert sich der Definitionsbereich, der Schnittpunkt des Graphen mit der x-Achse und die vertikale Asymptote. Der Wertebereich und das Monotonieverhalten ändern dabei nicht.

Der Wertebereich und das Monotonieverhalten ändern bei $x \rightarrow x + a$ nicht.

Logarithmusfunktion zur Basis 2: Aufgabe 3

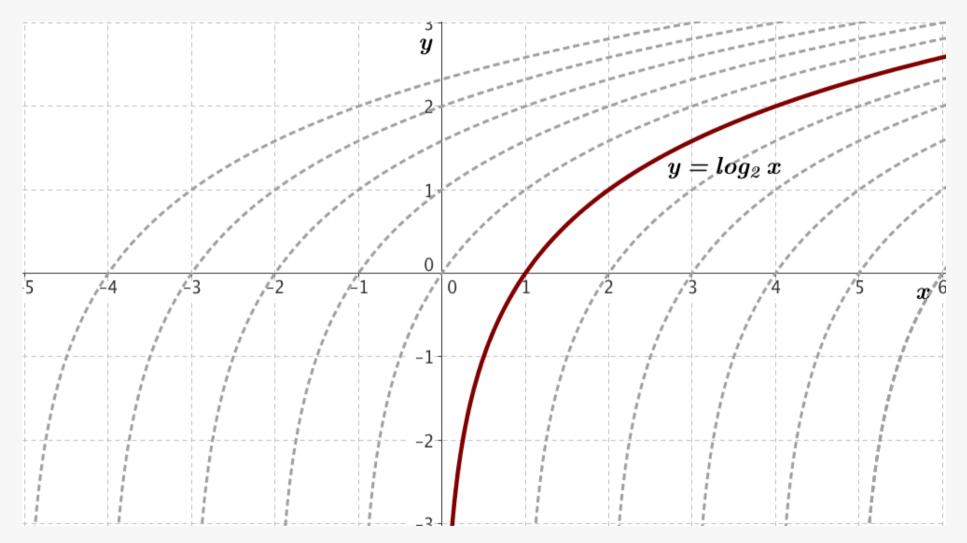


Abb. 3-1: Die Logarithmusfunktionen y = log(x + a) zur Basis 2, die ganze Zahl a gehört dem Intervall [-5, 5]

Aufgabe 3: Bestimmen Sie den Schnittpunkt des Graphen der Funktion $y = \log_2(x + a)$, $a \in \mathbb{R}$ mit der x-Achse.

Die x-Koordinate des Schnittpunktes bestimmt man durch die Bedingung, dass das Argument der Logarithmusfunktion gleich 1 wird, die y-Koordinate ist gleich Null.

$$x_S + a = 1$$
, $x_S = 1 - a$, $y_S = 0$, $S_x = (1 - a, 0)$

Durch Einsetzen der bestimmten a-Werten, kann man diese Formel mit den Ergebnissen der Aufgabe 2 vergleichen:

$$a = 3,$$
 $x_S = 1 - a = 1 - 3 = -2,$ $S_x = (-2, 0)$

$$a = -2$$
, $x_S = 1 - (-2) = 1 + 2 = 3$, $S_x = (3, 0)$

Logarithmusfunktion zur Basis 2: Aufgabe 4

Aufgabe 4-1:

In der Abb. 4-1 (Seite 4-2) sind Funktionen y = f(x), y = g(x) und y = h(x) dargestellt. Bestimmen Sie, welche Funktionsgleichung welcher Kurve entspricht.

$$f(x) = \log_2(x-3)$$
, $g(x) = \log_2(x+1)$, $h(x) = \log_2(x+3)$

Aufgabe 4-2:

In der Abb. 4-2 (Seite 4-3) sind Logarithmusfunktionen und Exponentailfunktionen dargestellt. Bestimmen Sie, welche Funktionsgleichung welcher Kurve entspricht.

$$f(x) = \log_2(x-1)$$
, $g(x) = \log_2(x-1) + 1$, $h(x) = 2^x$, $j(x) = 2^{x+1}$

Logarithmusfunktion zur Basis 2: Aufgabe 4-1

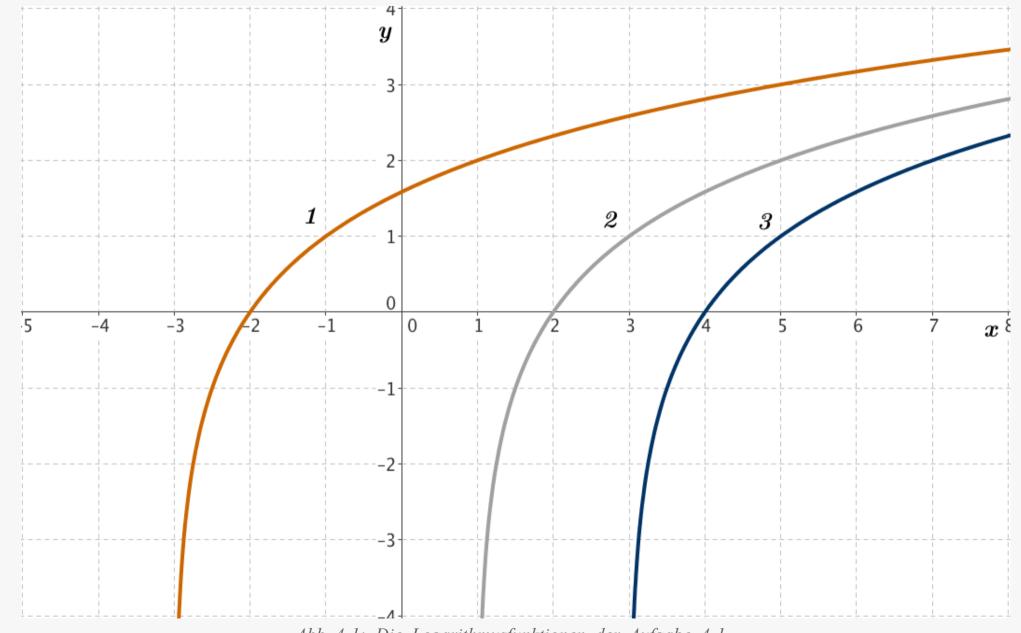


Abb. 4-1: Die Logarithmusfunktionen der Aufgabe 4-1

$$f(x) = \log_2(x-3)$$
, $g(x) = \log_2(x+1)$, $h(x) = \log_2(x+3)$ Vorkurs, Mathematik

Logarithmusfunktion zur Basis 2: Aufgabe 4-2

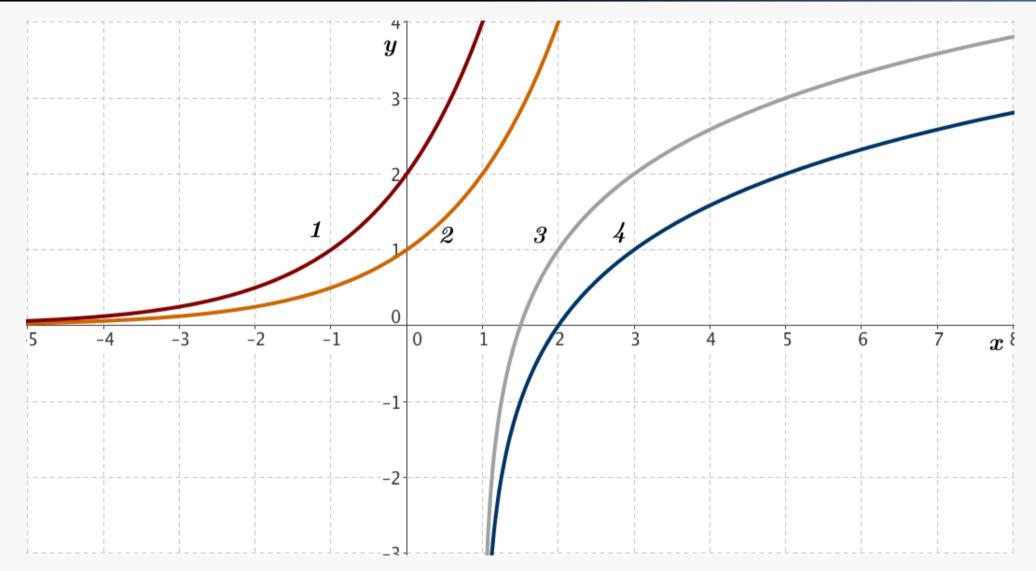


Abb. 4-2: Die Logarithmusfunktionen und Exponentailfunktionen der Aufgabe 4-2

$$f(x) = \log_2(x-1)$$
, $g(x) = \log_2(x-1) + 1$, $h(x) = 2^x$, $j(x) = 2^{x+1}$

Lösung 4-1:

(3)
$$f(x) = \log_2(x-3)$$
, (2) $g(x) = \log_2(x+1)$, (1) $h(x) = \log_2(x+3)$

Lösung 4-2:

(4)
$$f(x) = \log_2(x-1)$$
, (3) $g(x) = \log_2(x-1) + 1$,

(2)
$$h(x) = 2^x$$
, (1) $j(x) = 2^{x+1}$

Logarithmusfunktion zur Basis 2: Aufgaben 5-7

Aufgabe 5:

Was bewirkt der Parameter c in der Funktion

$$y = \log_2(x+a) + c$$
, $a, c \in \mathbb{R}$

Betrachten Sie dabei Definitionsbereich, Wertebereich, Symmetrieeigenschaften, Monotonie und Schnittpunkte mit den Achsen.

Aufgabe 6:

Für eine Funktion $y = \log_2(x + a) + c$, $a, c \in \mathbb{R}$, bestimmen Sie die allgemeine Form des Schnittpunktes mit der x-Achse.

Aufgabe 7:

Für eine Funktion $y = \log_2(x + a) + c$, $a, c \in \mathbb{R}$, bestimmen Sie die allgemeine Form des Schnittpunktes mit der y-Achse. Geben Sie die Bedingung an, wenn die Logarithmusfunktion einen Schnittpunkt mit der y-Achse haben kann.

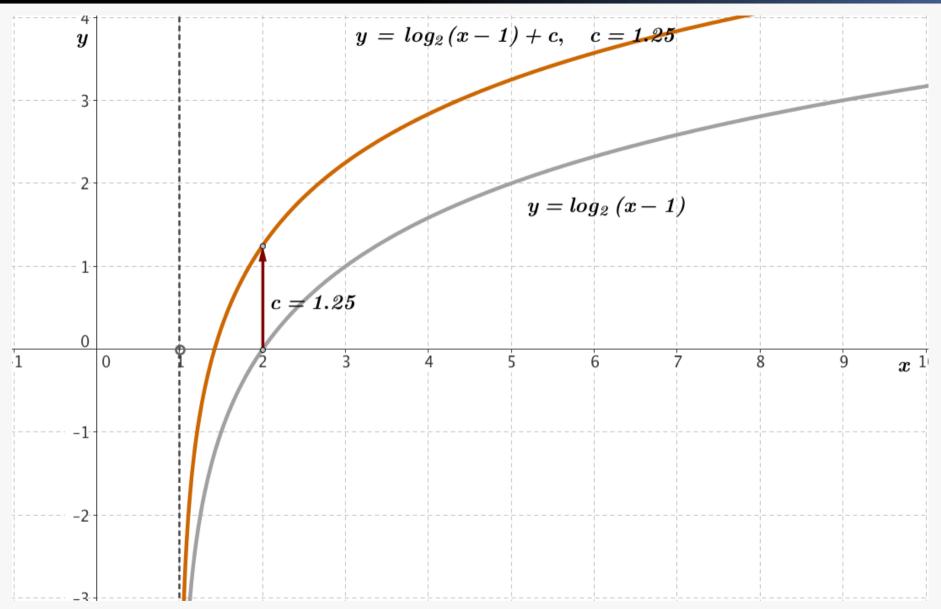


Abb. 5-1: Zur Illustration der Aufgabe 4: Was bewirkt der additive Parameter c in der Logarithmusfunktion. In dieser Darstellung sind a=-1 und c=1.25

$$y = \log_2(x - 1) + c, \quad c \in \mathbb{R}$$

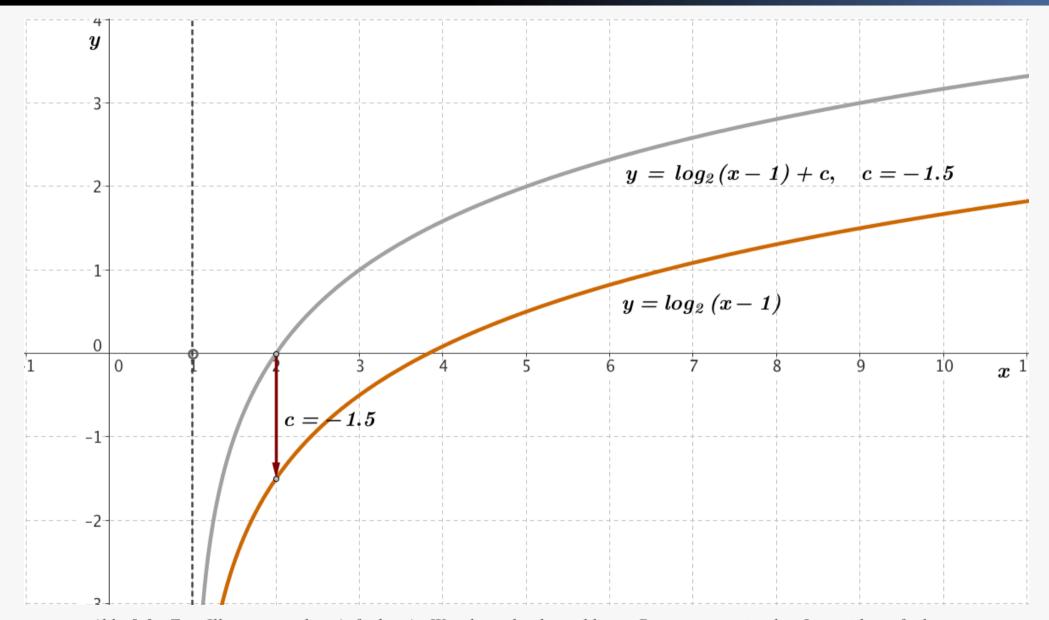


Abb. 5-2: Zur Illustration der Aufgabe 4: Was bewirkt der additive Parameter c in der Logarithmusfunktion. In dieser Darstellung sind a=-1 und c=-1.5

$$y = \log_2(x - 1) + c, \quad c \in \mathbb{R}$$

Man sieht, dass Definitionsbereich, Wertebereich, Symmetrieeigenschaften und Monotonie sich nicht ändern. Die beiden Funktionen

$$y = \log_2(x-1)$$
 und $y = \log_2(x-1) + c$, $c = [-2, 2]$

haben den gleichen Definitionsbereich $D = (1, +\infty)$,

den gleichen Wertebereich $W = \mathbb{R}$,

besitzen keine Symmetrie und sind monoton wachsend.

Die beiden Funktionen haben keinen Schnittpunkt mit der y-Achse. Man kann aber sehen, dass sich die Lage des Schnittpunktes mit der x-Achse ändert.

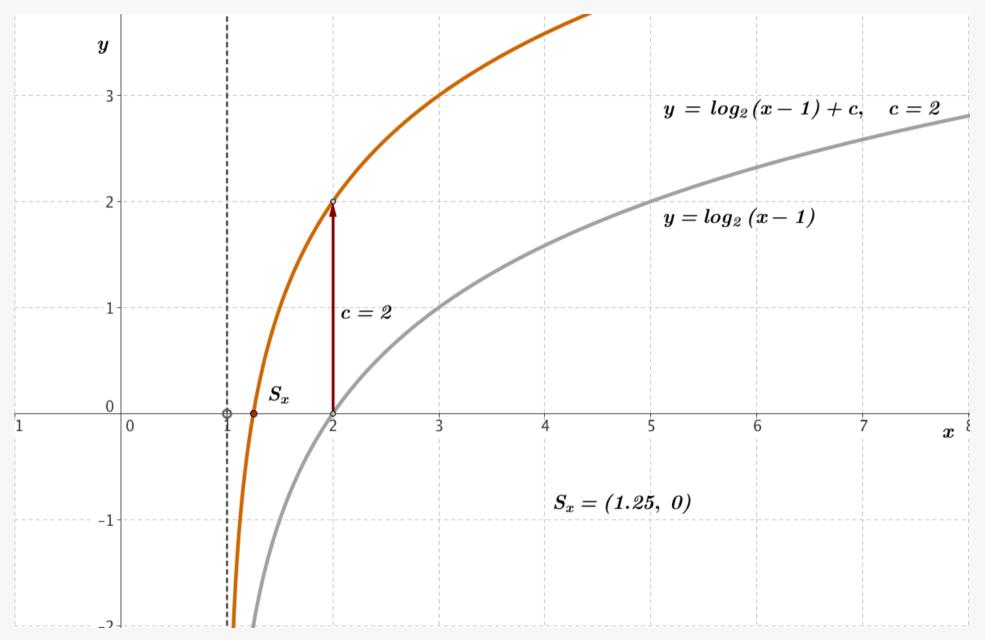


Abb. 5-3: Der Schnittpunkt der Funktion mit der x-Achse bei c=2 ist (1.25, 0)

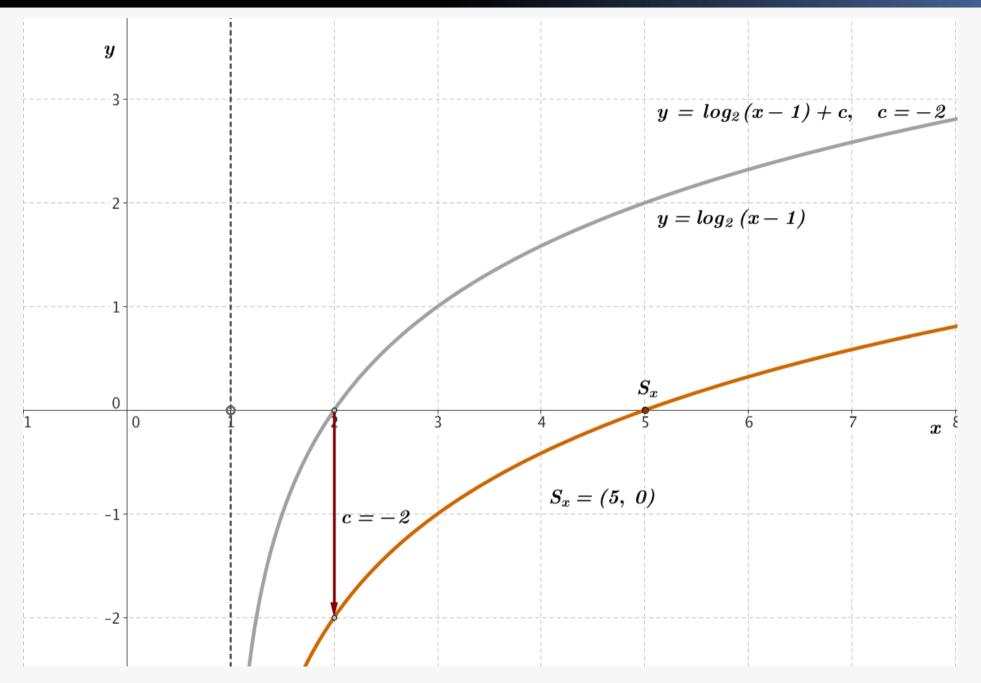


Abb. 5-4: Der Schnittpunkt der Funktion mit der x-Achse bei c = -2 ist (5, 0)

Der Schnittpunkt mit der x-Achse soll die Bedingung erfüllen, dass seine y-Koordinate gleich Null ist:

$$S_x = (x_S, 0)$$

Aus der Bedingung, dass y-Koordinate gleich Null ist, kann man die x-Koordinate des Schnittpunktes bestimmen.

$$\begin{split} y_S &= 0 \ : \quad 0 = \log_2(x_S + a) + c \,, \\ \log_2(x_S + a) &= -c \,, \quad x_S + a = 2^{-c} \,, \quad x_S = 2^{-c} - a \\ y &= \log_2(x + a) + c \,, \quad S_x = (x_S, \, 0) = (2^{-c} - a \,, \, 0) \end{split}$$

Probe:
$$a = -1$$
, $c = -2$: $x_S = 2^{-c} - a = 2^2 - (-1) = 5$
 $a = -1$, $c = 2$: $x_S = 2^{-c} - a = 2^{-2} - (-1) = \frac{1}{4} + 1 = 1.25$

Das entspricht den Ergebnissen, den wir schon bekommen haben (sehe Abb. 5-3 und 5-4).

Der Schnittpunkt mit der y-Achse soll die Bedingung erfüllen, dass seine x-Koordinate gleich Null ist:

$$S_{y} = (0, y_{S})$$

Aus der Bedingung, dass x-Koordinate gleich Null ist, kann man die y-Koordinate des Schnittpunktes bestimmen.

$$x_S = 0$$
: $y_S = \log_2(x_S + a) + c = \log_2 a + c$, $S_y = (0, \log_2 a + c)$

Aus dieser Formel kann man entnehmen, dass die Logarithmusfunktion nur dann einen Schnittpunkt mit der y-Achse hat, wenn a > 0 ist.

Nehmen wir bestimmte Werte der Parameter, berechnen entsprechende Schnittpunkte und prüfen die Ergebnisse an den graphischen Darstellungen.

$$S_y = (0, \log_2 a + c)$$

- 1) a = 2, c = 1, $S_y = (0, \log_2 a + c) = (0, \log_2 2 + 1) = (0, 2)$ (Abbildung 3-3a)
- 2) a = 4, c = -3, $S_v = (0, \log_2 a + c) = (0, \log_2 4 3) = (0, -1)$

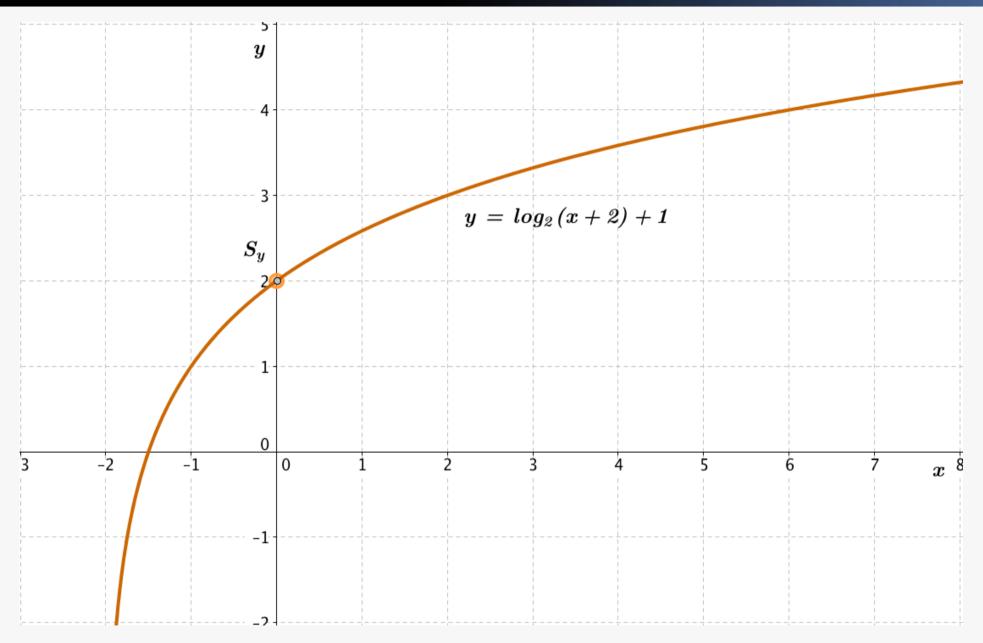


Abb. 7-1: Der Schnittpunkt der Funktion mit der y-Achse bei a=2 und c=1 ist (0, 2)

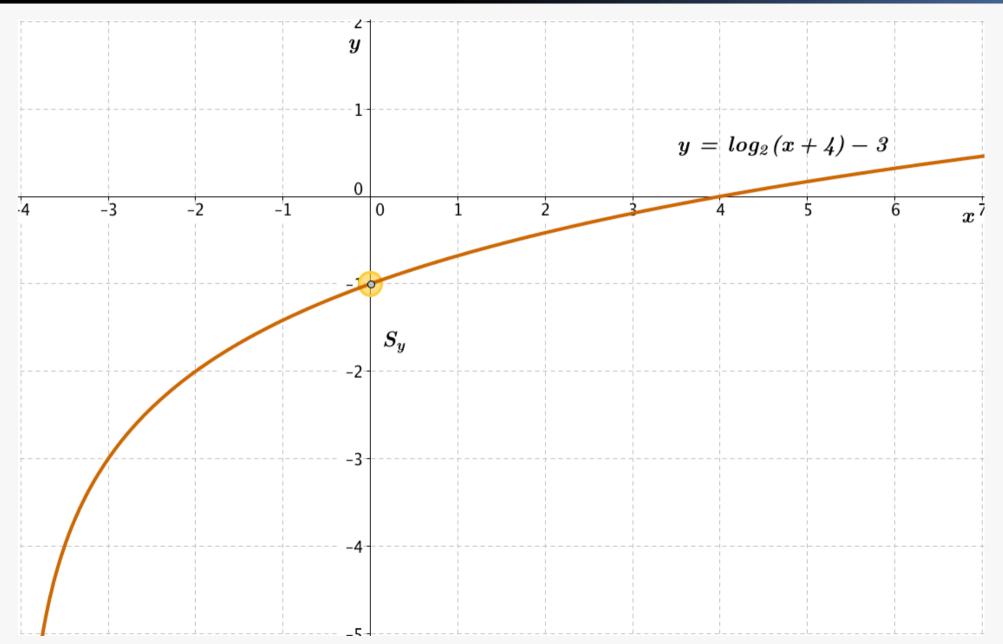


Abb. 7-2: Der Schnittpunkt der Funktion mit der y-Achse bei a=4 und c=-3 ist (0,-1)

