
  

Even,  odd  or  neither?  Algebraic  and  graphical  proof

4-E1 Precalculus



  

Symmetry  of  a  function:  Exercise  3

Determine  algebraically  and  graphically  whether  the  functions
are  even,  odd  or  neither:

3-A

a )  f (x ) = x 4 − 2 x 2 ,        b )  f (x) = x 3 − 4 x.

Algebraic  proof:   transform  x  to  -x  and  compare  f (x)  to  f (-x).

Graphical  proof:  decide  on  the  symmetry  properties  by  visual
                              inspection  of  the  function  graph.

Comment:

Precalculus



  

3-1

Algebraic  solution  a):

To  check  whether  a  function  is  even,  odd  or  neither,  we  first  
have  to  find  f (-x)  and  then  to  decide  which  of  the  following 
equations  holds:

(1) :   f (−x) = f (x ) ,          (2) :   f (−x) =− f (x )

If  equation  (1)  is  true,  it  is  an  even  function,  if  equation (2),
it  is  an  odd  function.  If  neither  of  them  holds,  the function  is
neither  even  nor  odd.

f (−x ) = (−x ) 4 − 2(−x) 2 = x 4 − 2 x 2 = f (x)

Raising  (-x)  to  an  even  power  n,  is  just  the  same  as  raising  + x 
to  the  power  n:

(−x) 2 = (−x)⋅(−x ) = x 2

(−x) 4 = (−x)⋅(−x )⋅(−x)⋅(−x ) = x 4

Graphical  solution:  to  make  a  statement  on  the  function  properties,
in  the  present  case  on  the  symmetries,  by  looking  at  the  graph.

f (x) = x 4 − 2 x 2

Example  1:  Algebraic  solution  3a

Precalculus



  

Example  1:  Graphical  solution  3a

3-2

Fig. 3-1:  The  graph  of  y = f (x)  (a)  is  symmetric  with  respect  to  the  y-axis.  The  function  is  even

Precalculus



  

3-3

Example  1:  Algebraic  solution  3b

Algebraic  solution:

f (−x) = (−x ) 3 − 4 (−x ) =−x 3 + 4 x =−(x 3 − 4 x) =− f (x )

Raising  (-x)  to  an  odd  power  n  yields  the  negative  of  raising  +x  
to  the  power  n.  The  function  contains  two  odd  powers,  1  and  3,  
of  -x.

(−x) 3 = (−x )⋅(−x)⋅(−x ) =−x 3

f (x) = x 3 − 4 x

Precalculus



  

Example  1:  Graphical  solution  3b

3-4

Fig. 3-2:  The  graph  of  y = f (x)  (b)  is  symmetric  with  respect  to  the  origin.  The  function  is  odd

Precalculus



  

Determine,  whether  a  function  y = f (x)  is  even,  odd  or  neither  in
the  given  domains:

f (x) = x 2

2
− 2,        a ) D f = ℝ ,      b ) D f = [−2, 3 ]

4-A Precalculus

Explain  how  symmetry  properties  can  be  influenced  by  changing 
the  function  domain.

Symmetry  of  a  function:  Exercise  4



  

4-1 Precalculus

f (x) = x 2

2
− 2

Algebraic  proof:

f (−x) =
(−x) 2

2
− 2 = x 2

2
− 2 = f (x)

The  algebraic  check  of  the  function  term  indicates,  that  the  function  is
even.  However  this  algebraic  check  is  not enough.  The  following  figures
4-1  and  4-2  show,  that  also  the  function  domain  can  influence  the  sym-
metry.

Here  we  have  a  symmetric  domain,  the  function  graph  (Fig.  4-1)  is
symmetric  with   respect  to  the  y-axis.

a ) D f = ℝ

b ) D f = [−2, 3]

In  this  case  the  function  graph  (Fig.  4-2)  is  not  symmetric  with  respect
to  the  y-axis,  as  the  domain  is  not  symmetric.  To  point  (3, 2.5)  there  is
no  symmetric  point  (-3,  2.5)  on  the  function  graph.

Symmetry  of  a  function:  Exercise  4a



  

4-2 Precalculus

Fig. 4-1:  The  graph  of  the  function  y = f (x)  is  symmetric  with  respect  to  the  y-axis

Symmetry  of  a  function:  Solution  4



  

4-3 Precalculus

Fig. 4-2:  The  graph  of  the  function  y = f (x)  is  not  symmetric  with  respect  the  y-axis

Symmetry  of  a  function:  Solution  4



  

Symmetry  of  a  function:  Exercises  5, 6

Exercise  5:  Determine

5-A

a )  f (x ) = x 2 − 2

b )  f (x ) = x 3 − 1

d )  f (x ) = x 2 − 2 x − 1

e )  f (x) =− x 5/2 + 7 x 2 − 11 x

c )  f (x) = 5 x 2 − 3 x + √x

g )  f (x) = x 5 − 4 x 3 + x

2)  which  of  the  polynomial  functions  are  even,  odd  or  neither.

1)  which  of  the  given  functions  are  polynomial  functions

Formulate  the  condition  for  a  given  polynomial  function,  to  be
even  odd  or  neither  of  them. 

Precalculus

Exercise  6:



  

1)  A  polynomial  y = f (x)  is  an  expression  constructed  from  variables
and  constants,  using  only  the  operations  of  addition,  subtraction  and
multiplication.  A  polynomial  can  have  non-negative  integer exponents
only.  The  polynomial  functions  of  this  exercise  are:

a )  f (x ) = x 2 − 2

b )  f (x) = x 3 − 1

d )  f (x) = x 2 − 2 x − 1

g )  f (x) = x 5 − 4 x 3 + x

5-1

They  have  integer  exponents  only.  The  functions  c)  and  e)  are  no
polynomials.  The  last  term  of  c)  is  x  raised  to  power  1/2  and  the
first  term  of  e)  is  x  raised  to  5/2.

c )  f (x) = 5 x 2 − 3 x + √x

e )  f (x) =− x 5/2 + 7 x 2 − 11 x

Precalculus

Function  symmetry:  Solution  5



  

5-2

2)  To  determine  which  of  the  polynomial  functions  is  even,  odd  or
neither,  we  find  for  each  function  f (-x).

a )  f (x ) = x 2 − 2,        f (−x) = (−x) 2 − 2 = x 2 − 2 = f (x )

b )  f (x ) = x 3 − 1,        f (−x) = (−x) 3 − 1 =− x 3 − 1 ≠ f (x )

d )  f (x ) = x 2 − 2 x − 1,

g )  f (x ) = x 5 − 4 x 3 + x ,

f (−x ) = (−x) 2 − 2(−x) − 1 = x 2 + 2 x − 1 ≠ f (x)

f (−x) = (−x )5 − 4(−x )3 + (−x ) =−x 5 + 4 x 3 − x =

=−(x 5 − 4 x 3 + x) =− f (x)

The  function  a)  is  even,  the  function  g)  is  odd,  and  the  functions  b)
and  d)  are  neither  even  nor  odd.

Precalculus

Function  symmetry:  Solution  5



  

5-3

There  is  also  another  possibility  to  test,  whether  a  function  is  even,  odd
or  neither.  As  we  have  shown  algebraically  the  function  a)  is  even:

a )  f (x ) = x 2 − 2,        f (−x ) = f (x )

Let  us  take  two   values  of  x,  x = 1  and  x = -1, which  are   symmetric  about
the  origin  and  evaluate  the  function  for  both  x-values:

f (−1) = (−1) 2 − 2 = 1 − 2 =−1,            f (1) = 12 − 2 = 1 − 2 =−1

f (−1) = f (1)

b )  f (x ) = x 3 − 1,        f (−x) ≠ f (x)

f (−1) = (−1) 3 − 1 =−1 − 1 =−2,          f (1) = 1 3 − 1 = 1 − 1 = 0

f (−1) ≠± f (1)

Precalculus

Function  symmetry:  Solution  5



  

5-4

d )  f (x) = x 2 − 2 x − 1,          f (−x ) ≠ f (x)

f (−1) = (−1) 2 − 2⋅(−1) − 1 = 1 + 2 − 1 = 2

f (1) = 12 − 2⋅1 − 1 = 1 − 2 − 1 =−2

f (−1) =− f (1)

We  have  shown  already,  that  this  function  is  neither  even  nor  odd.
However,  for  these  particular  x-values  the  function  shows  the  pro-
perty  of  being  odd.

If  we  just  evaluate  the  function  at  two  x-values  which  are  symmetric
about  the  origin,  we  have  to  be  sure,  that  the  same  result  will  be  ob-
tained  for  all  other  pair  of  symmetric  x-values  of  the  function  domain.

To  remember!

The  figure  on  the  next  page  shows  the  graph  of  this  function  with
two  points:

P1 = (1, f (1)) = (1, −2) ,          P2 = (−1, f (−1)) = (−1, 2)

Precalculus

Function  symmetry:  Solution  5



  

5-5

Fig. 4:  Graph  of  a  neither  even  nor  odd  function  y = f (x)  with  two  points

Precalculus

Function  symmetry:  Solution  5



  

(−x) n =
x n

−x n

,  if  n  is  even

,  if  n  is  odd

Terms  with  even  powers  of  x  will  remain  the  same,  when  x  is  replaced  by  -x.

Terms  with  odd  powers  of  x  will  change  sign,  when  x  is  replaced  by  -x.

6-1 Precalculus

Function  symmetry:  Solution  6



  

6-2 Precalculus

Polynomial  functions  with  terms  containing  only  even  powers  of  the
variable  x  and  multiple  or  additive  constants  are  even  functions.  For
example,  the  following  functions  are  even:

f (x) = x 2

2
− 2

g (x) =−3 x 4 + 6 x 2 − 1

h (x) = 1 − x2

2
+ x4

24
− x6

720

These  functions  are  presented  in  Fig. 5-1.

A  multiple  constant  is  a  numerical  or  constant  factor  in  an  algebraic
term.  For  example,  1/2  is  the  multiple  constant  in  the  function  f (x).
- 3  and  6  are  multiple  constants  in  the  function  g (x).

The  constant  - 2  in  the  function  f (x)  and  -1  in  the  function  g (x)  are
additive  constants.

Function  symmetry:  Solution  6



  Fig. 5-1:  Graphs  of  even  functions

6-3 Precalculus

Function  symmetry:  Solution  6



  

6-4 Precalculus

Polynomial  functions  with  terms  containing  only  odd  powers  of  the
variable  x  are  odd  functions.  For  example,  odd  functions  are:  

f (x) = x 3

6

g (x) =−6 x 5 + 9 x 3 − x

h (x) = x − x 3

6
+ x 5

120

Function  symmetry:  Solution  6



  

6-5 Precalculus
Fig. 5-2:  Graphs  of  odd  functions

Function  symmetry:  Solution  6



  

Function  symmetry:  Exercise  7

7-A Precalculus

Determine  which  of  the  functions  given  below  are  even,  odd  
or  neither:

a )  f (x ) = 1
x

,         g (x ) = 1
x − 3

,         h (x ) = 2 x
x + 7

b )  f (x) = 1

x2
,         g (x) = x

x2 + 1
,         h (x) = 5 x3

x2 − 16

c )  f (x) = 1

x3
,         g (x) = 3

x3 − 4 x
,         h (x) = 2 x3 − x2

x2 + 5

d )  f (x) = x2 + 7

x2 − 3 x4
,         g (x) = x3 − 11 x

x4 + 12
,         h (x) = 5 x3

x7 − 9 x3

Formulate  the  conditions  for  a  rational  function  to  be  even  or  odd.

e )  f (x) = 1
∣ x ∣

,         g (x) =
∣ x ∣

x
,         h (x) = 1

∣ x ∣+ 1/2

e )  f (x) = 1

x2 + 2∣ x ∣+ 1
,          g (x) = 1

x2 − 0.8∣ x ∣+ 1/2



  

7-1 Precalculus

Definition:

A  rational  function  is  a  function  which  can  be  defined  by  a  rational
fraction,  i.e.  an  algebraic  fraction  such  that  both  the  numerator  and
the  denominator  are  polynomials.

f (x) = P (x)
Q (x)

,        Q (x) ≠ 0

Example  of  functions  b):

f (x) = 1

x2
,         P f (x) = 1,         Q f (x) = x2

g (x) = x

x2 + 1
,         Pg (x) = x ,       Qg (x) = x2 + 1

h (x) = 5 x3

x2 − 16
,         Ph (x) = 5 x3 ,         Qh(x) = x2 − 16

Function  symmetry:  Exercise  7



  

Function  symmetry:  Solution  7 a,b

a )  f (x ) = 1
x

,         g (x ) = 1
x − 3

,         h (x) = 2 x
x + 7

f (−x ) =− 1
x

=− f (x) ,         g (−x) = 1
−x − 3

=− 1
x + 3

h (−x) =− 2 x
−x + 7

= 2 x
x − 7

The  function  f (x)  is  odd.

b )  f (x) = 1

x2
,         g (x) = x

x2 + 1
,         h (x) = 5 x3

x2 − 16

f (−x) = 1

x2
= f (x) ,         g (−x) =

(−x)

(−x)2 + 1
=− x

x2 + 1
=− g (x)

h (−x) =
5(−x)3

(−x)2 − 16
=− 5 x3

x2 − 16
=−h (x)

The  function  f (x)  is  even,  the  functions  g (x)  and  h (x)  are  odd.

7-2 Precalculus



  

Function  symmetry:  Solution  7c

7-3 Precalculus

c )  f (x) = 1

x3
,         g (x) = 3

x3 − 4 x
,         h (x) = 2 x3 − x2

x2 + 5

f (−x ) = 1

(−x)3
=− 1

x3
=− f (x )

h (−x) =
2 (−x )3 − (−x )2

(−x)2 + 5
= −2 x3 − x2

x2 + 5
=

−(2 x3 + x2)

x2 + 5

g (x) = 3

x3 − 4 x
= 3

(−x)3 − 4(−x)
= 3

−x3 + 4 x
=− 3

x3 − 4 x
=−g (x)

The  function  f (x)  and  g (x)  are  odd.



  

Function  symmetry:  Solution  7d

7-4 Precalculus

d )  f (x) = x2 + 7

x2 − 3 x4
,         g (x) = x3 − 11 x

x4 + 12
,         h (x) = 5 x3

x7 − 9 x3

f (−x) =
(−x)2 + 7

(−x)2 − 3(−x)4
= x2 + 7

x2 − 3 x4
= f (x)

g (−x) =
(−x )3 − 11⋅(−x)

(−x)4 + 12
= −x3 + 11 x

x4 + 12
=− x3 − 11 x

x4 + 12
=−g (x)

h (−x) =
5⋅(−x)3

(−x)7 − 9 (−x )3
= 5 x3

x7 − 9 x3
= h (x)

The  functions  f (x)  and  h (x)  are  even,  the  function  g (x)  is  odd.



  

7-5 Precalculus

f (x) = 1
∣ x ∣

,        f (−x) = 1
∣− x ∣

= 1
∣ x ∣

= f (x)

Fig. 7-1:  Graph  of  the  even  function  y = f (x)

Function  symmetry:  Solution  7e



  

7-6 Precalculus

Fig. 7-2:  Graph  of  the  odd  function  y = g (x)

g (x) =
∣ x ∣

x
,        g (−x) =

∣− x ∣
−x

=−
∣ x ∣

x
=−g (x)

Function  symmetry:  Solution  7e



  

7-7a Precalculus

Fig. 7-3:  Graph  of  the  even  function  y = h (x)

h (x) = 1
∣ x ∣+ 1/2

,         h (−x) = 1
∣−x ∣+ 1 /2

= 1
∣ x ∣+ 1/2

= h (x)

Function  symmetry:  Solution  7e



  Fig. 7-4:  Even  functions,  which  we  may  observe  (Lüneburg)

7-7b Precalculus



  

7-8 Precalculus

Fig. 7-4:  Graphs  of  even  functions

f (x) = 1

x2 + 2∣ x ∣+ 1
,          g (x) = 1

x2 − 0.8∣ x ∣+ 1/2

Function  symmetry:  Solution  7f



  

Exercise  7:  Summary

7-9a Precalculus

A  rational  function  y = f (x)  is  even,  when

●  the  numerator  P (x)  and  the  denominator  Q (x)  are  even  functions,
    for  example,  y = f (x)  a)  and  y = f (x)  d):

f (x) = P (x)
Q (x )

,        Q (x) ≠ 0

●  the  numerator  P (x)  and  the  denominator  Q (x)  are  odd  functions,
    for  example,  y = h (x)  d):

a )  f (x) = 1

x2
,       d )  f (x) = x2 + 7

x2 − 3 x4
,       e )  f (x) = 1

∣ x ∣

h (x) = 5 x3

x7 − 9 x3



  

7-9b Precalculus

A  rational  function  y = f (x)  is  odd,  when

●  the  numerator  P (x)  is  even  and  the  denominator  Q (x)  is  odd,
    for  example:

f (x) = P (x)
Q (x )

,        Q (x) ≠ 0

●  the  numerator  P (x)  is  odd  and  the  denominator  Q (x)  is  even,
    for  example:

a ) f (x) = 1
x

,         c ) g (x ) = 3

x3 − 4 x
,         e )  g (x ) =

∣ x ∣
x

b )  g (x) = x

x2 + 1
,         h (x) = 5 x3

x2 − 16

Exercise  7:  Summary
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