Even, odd or neither? Algebraic and graphical proof
Symmetry of a function: Exercise 3

Determine algebraically and graphically whether the functions are even, odd or neither:

\[a) \quad f(x) = x^4 - 2x^2, \quad b) \quad f(x) = x^3 - 4x. \]

Comment:

Algebraic proof: transform \(x \) to \(-x\) and compare \(f(x) \) to \(f(-x) \).

Graphical proof: decide on the symmetry properties by visual inspection of the function graph.
Algebraic solution a):

To check whether a function is even, odd or neither, we first have to find $f(-x)$ and then to decide which of the following equations holds:

(1): $f(-x) = f(x)$,
(2): $f(-x) = -f(x)$

If equation (1) is true, it is an even function, if equation (2), it is an odd function. If neither of them holds, the function is neither even nor odd.

$$f(x) = x^4 - 2x^2$$

$$f(-x) = (-x)^4 - 2(-x)^2 = x^4 - 2x^2 = f(x)$$

Raising (-x) to an even power n, is just the same as raising $+x$ to the power n:

$$(-x)^2 = (-x)\cdot(-x) = x^2$$

$$(-x)^4 = (-x)\cdot(-x)\cdot(-x)\cdot(-x) = x^4$$

Graphical solution: to make a statement on the function properties, in the present case on the symmetries, by looking at the graph.
Example 1: Graphical solution 3a

Fig. 3-1: The graph of $y = f(x)$ (a) is symmetric with respect to the y-axis. The function is even.
Example 1: Algebraic solution 3b

Algebraic solution:

\[f(x) = x^3 - 4x \]

\[f(-x) = (-x)^3 - 4(-x) = -x^3 + 4x = -(x^3 - 4x) = -f(x) \]

Raising \((-x)\) to an **odd** power \(n\) yields the negative of raising \(+x\) to the power \(n\). The function contains two odd powers, 1 and 3, of \(-x\).

\[(-x)^3 = (-x) \cdot (-x) \cdot (-x) = -x^3 \]
Fig. 3-2: The graph of $y = f(x)$ (b) is symmetric with respect to the origin. The function is odd.
Determine, whether a function \(y = f(x) \) is even, odd or neither in the given domains:

\[
f(x) = \frac{x^2}{2} - 2, \quad a) \ D_f = \mathbb{R}, \quad b) \ D_f = [-2, 3]
\]

Explain how symmetry properties can be influenced by changing the function domain.
Algebraic proof:

\[f(x) = \frac{x^2}{2} - 2 \]

\[f(-x) = \frac{(-x)^2}{2} - 2 = \frac{x^2}{2} - 2 = f(x) \]

The algebraic check of the function term indicates, that the function is even. However this algebraic check is not enough. The following figures 4-1 and 4-2 show, that also the function domain can influence the symmetry.

a) \(D_f = \mathbb{R} \)

Here we have a symmetric domain, the function graph (Fig. 4-1) is symmetric with respect to the \(y \)-axis.

b) \(D_f = [-2, 3] \)

In this case the function graph (Fig. 4-2) is not symmetric with respect to the \(y \)-axis, as the domain is not symmetric. To point (3, 2.5) there is no symmetric point (-3, 2.5) on the function graph.
Fig. 4-1: The graph of the function $y = f(x)$ is symmetric with respect to the y-axis.
Symmetry of a function: Solution 4

Fig. 4-2: The graph of the function \(y = f(x) \) is not symmetric with respect the y-axis.
Exercise 5: Determine

1) which of the given functions are polynomial functions

\(a \) \(f(x) = x^2 - 2 \)

\(b \) \(f(x) = x^3 - 1 \)

\(c \) \(f(x) = 5x^2 - 3x + \sqrt{x} \)

\(d \) \(f(x) = x^2 - 2x - 1 \)

\(e \) \(f(x) = -x^{5/2} + 7x^2 - 11x \)

\(g \) \(f(x) = x^5 - 4x^3 + x \)

2) which of the polynomial functions are even, odd or neither.

Exercise 6:

Formulate the condition for a given polynomial function, to be even odd or neither of them.
1) A **polynomial** \(y = f(x) \) is an expression constructed from variables and constants, using only the operations of addition, subtraction and multiplication. A polynomial can have non-negative integer exponents only. The polynomial functions of this exercise are:

\[

text{a)} \quad f(x) = x^2 - 2 \\

text{b)} \quad f(x) = x^3 - 1 \\

text{d)} \quad f(x) = x^2 - 2x - 1 \\

text{g)} \quad f(x) = x^5 - 4x^3 + x
\]

They have integer exponents only. The functions \(c) \) and \(e) \) are no polynomials. The last term of \(c) \) is \(x \) raised to power \(1/2 \) and the first term of \(e) \) is \(x \) raised to \(5/2 \).

\[

text{c)} \quad f(x) = 5x^2 - 3x + \sqrt{x} \\

text{e)} \quad f(x) = -x^{5/2} + 7x^2 - 11x
\]
2) To determine which of the polynomial functions is even, odd or neither, we find for each function $f(-x)$.

\[a) \quad f(x) = x^2 - 2, \quad f(-x) = (-x)^2 - 2 = x^2 - 2 = f(x) \]

\[b) \quad f(x) = x^3 - 1, \quad f(-x) = (-x)^3 - 1 = -x^3 - 1 \neq f(x) \]

\[d) \quad f(x) = x^2 - 2x - 1, \quad \]

\[f(-x) = (-x)^2 - 2(-x) - 1 = x^2 + 2x - 1 \neq f(x) \]

\[g) \quad f(x) = x^5 - 4x^3 + x, \quad \]

\[f(-x) = (-x)^5 - 4(-x)^3 + (-x) = -x^5 + 4x^3 - x = \]

\[= -(x^5 - 4x^3 + x) = -f(x) \]

The function \(a)\) is even, the function \(g)\) is odd, and the functions \(b)\) and \(d)\) are neither even nor odd.
There is also another possibility to test, whether a function is even, odd or neither. As we have shown algebraically the function \(a \) is even:

\[
a) \quad f(x) = x^2 - 2, \quad f(-x) = f(x)
\]

Let us take two values of \(x \), \(x = 1 \) and \(x = -1 \), which are symmetric about the origin and evaluate the function for both \(x \)-values:

\[
f(-1) = (-1)^2 - 2 = 1 - 2 = -1, \quad f(1) = 1^2 - 2 = 1 - 2 = -1
\]

\[
f(-1) = f(1)
\]

\[
b) \quad f(x) = x^3 - 1, \quad f(-x) \neq f(x)
\]

\[
f(-1) = (-1)^3 - 1 = -1 - 1 = -2, \quad f(1) = 1^3 - 1 = 1 - 1 = 0
\]

\[
f(-1) \neq \pm f(1)
\]
Function symmetry: Solution 5

\[d) \quad f(x) = x^2 - 2x - 1, \quad f(-x) \neq f(x) \]

\[f(-1) = (-1)^2 - 2 \cdot (-1) - 1 = 1 + 2 - 1 = 2 \]

\[f(1) = 1^2 - 2 \cdot 1 - 1 = 1 - 2 - 1 = -2 \]

\[f(-1) = -f(1) \]

We have shown already, that this function is neither even nor odd. However, for these particular \(x \)-values the function shows the property of being odd.

To remember!

If we just evaluate the function at two \(x \)-values which are symmetric about the origin, we have to be sure, that the same result will be obtained for all other pair of symmetric \(x \)-values of the function domain.

The figure on the next page shows the graph of this function with two points:

\[P_1 = (1, f(1)) = (1, -2), \quad P_2 = (-1, f(-1)) = (-1, 2) \]
Fig. 4: Graph of a neither even nor odd function $y = f(x)$ with two points.
Function symmetry: Solution 6

\((-x)^n = \begin{cases}
 x^n, & \text{if } n \text{ is even} \\
 -x^n, & \text{if } n \text{ is odd}
\end{cases}\)

Terms with \textit{even} powers of \(x\) will remain the same, when \(x\) is replaced by \(-x\).

Terms with \textit{odd} powers of \(x\) will change sign, when \(x\) is replaced by \(-x\).
Polynomial functions with terms containing only even powers of the variable x and multiple or additive constants are even functions. For example, the following functions are even:

$$f(x) = \frac{x^2}{2} - 2$$

$$g(x) = -3x^4 + 6x^2 - 1$$

$$h(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720}$$

These functions are presented in Fig. 5-1.

A multiple constant is a numerical or constant factor in an algebraic term. For example, $1/2$ is the multiple constant in the function $f(x)$. -3 and 6 are multiple constants in the function $g(x)$.

The constant -2 in the function $f(x)$ and -1 in the function $g(x)$ are additive constants.
Function symmetry: Solution 6

Fig. 5-1: Graphs of even functions
Polynomial functions with terms containing **only** odd powers of the variable x are odd functions. For example, **odd** functions are:

$$f(x) = \frac{x^3}{6}$$

$$g(x) = -6x^5 + 9x^3 - x$$

$$h(x) = x - \frac{x^3}{6} + \frac{x^5}{120}$$
Fig. 5-2: Graphs of odd functions
Function symmetry: Exercise 7

Determine which of the functions given below are even, odd or neither:

a) \(f(x) = \frac{1}{x} \), \(g(x) = \frac{1}{x - 3} \), \(h(x) = \frac{2x}{x + 7} \)

b) \(f(x) = \frac{1}{x^2} \), \(g(x) = \frac{x}{x^2 + 1} \), \(h(x) = \frac{5x^3}{x^2 - 16} \)

c) \(f(x) = \frac{1}{x^3} \), \(g(x) = \frac{3}{x^3 - 4x} \), \(h(x) = \frac{2x^3 - x^2}{x^2 + 5} \)

d) \(f(x) = \frac{x^2 + 7}{x^2 - 3x^4} \), \(g(x) = \frac{x^3 - 11x}{x^4 + 12} \), \(h(x) = \frac{5x^3}{x^7 - 9x^3} \)

e) \(f(x) = \frac{1}{|x|} \), \(g(x) = \frac{|x|}{x} \), \(h(x) = \frac{1}{|x| + 1/2} \)

e) \(f(x) = \frac{1}{x^2 + 2|x| + 1} \), \(g(x) = \frac{1}{x^2 - 0.8|x| + 1/2} \)

Formulate the conditions for a rational function to be even or odd.
Definition:

A **rational function** is a function which can be defined by a rational fraction, i.e. an algebraic fraction such that both the numerator and the denominator are polynomials.

\[
f(x) = \frac{P(x)}{Q(x)}, \quad Q(x) \neq 0
\]

Example of functions \(b) \):

\[
f(x) = \frac{1}{x^2}, \quad P_f(x) = 1, \quad Q_f(x) = x^2
\]

\[
g(x) = \frac{x}{x^2 + 1}, \quad P_g(x) = x, \quad Q_g(x) = x^2 + 1
\]

\[
h(x) = \frac{5x^3}{x^2 - 16}, \quad P_h(x) = 5x^3, \quad Q_h(x) = x^2 - 16
\]
Function symmetry: Solution 7 a,b

\(a\) \(f(x) = \frac{1}{x} \), \(g(x) = \frac{1}{x - 3} \), \(h(x) = \frac{2x}{x + 7} \)

\[f(-x) = -\frac{1}{x} = -f(x), \quad g(-x) = \frac{1}{-x - 3} = -\frac{1}{x + 3} \]

\[h(-x) = -\frac{2x}{-x + 7} = \frac{2x}{x - 7} \]

The function \(f(x) \) is odd.

\(b\) \(f(x) = \frac{1}{x^2} \), \(g(x) = \frac{x}{x^2 + 1} \), \(h(x) = \frac{5x^3}{x^2 - 16} \)

\[f(-x) = \frac{1}{x^2} = f(x), \quad g(-x) = \frac{(-x)}{(-x)^2 + 1} = -\frac{x}{x^2 + 1} = -g(x) \]

\[h(-x) = \frac{5(-x)^3}{(-x)^2 - 16} = -\frac{5x^3}{x^2 - 16} = -h(x) \]

The function \(f(x) \) is even, the functions \(g(x) \) and \(h(x) \) are odd.
The function \(f(x) \) and \(g(x) \) are odd.
Function symmetry: Solution 7d

\(d \quad f(x) = \frac{x^2 + 7}{x^2 - 3x^4}, \quad g(x) = \frac{x^3 - 11x}{x^4 + 12}, \quad h(x) = \frac{5x^3}{x^7 - 9x^3} \)

\[
\begin{align*}
 f(-x) &= \frac{(-x)^2 + 7}{(-x)^2 - 3(-x)^4} = \frac{x^2 + 7}{x^2 - 3x^4} = f(x) \\
 g(-x) &= \frac{(-x)^3 - 11 \cdot (-x)}{(-x)^4 + 12} = \frac{-x^3 + 11x}{x^4 + 12} = -\frac{x^3 - 11x}{x^4 + 12} = -g(x) \\
 h(-x) &= \frac{5 \cdot (-x)^3}{(-x)^7 - 9(-x)^3} = \frac{5x^3}{x^7 - 9x^3} = h(x)
\end{align*}
\]

The functions \(f(x) \) and \(h(x) \) are even, the function \(g(x) \) is odd.
Function symmetry: Solution 7e

Fig. 7-1: Graph of the even function $y = f(x)$

$f(x) = \frac{1}{|x|}, \quad f(-x) = \frac{1}{|-x|} = \frac{1}{|x|} = f(x)$
Function symmetry: Solution 7e

Fig. 7-2: Graph of the odd function $y = g(x)$

$$g(x) = \frac{|x|}{x}, \quad g(-x) = \frac{|-x|}{-x} = -\frac{|x|}{x} = -g(x)$$
Fig. 7-3: Graph of the even function \(y = h(x) \)

\[
h(x) = \frac{1}{|x| + 1/2}, \quad h(-x) = \frac{1}{|-x| + 1/2} = \frac{1}{|x| + 1/2} = h(x)
\]
Fig. 7-4: Even functions, which we may observe (Lüneburg)
Fig. 7-4: Graphs of even functions

\[
\begin{align*}
 f(x) &= \frac{1}{x^2 + 2|x| + 1}, \\
 g(x) &= \frac{1}{x^2 - 0.8|x| + 1/2}
\end{align*}
\]
A rational function $y = f(x)$ is even, when

- the numerator $P(x)$ and the denominator $Q(x)$ are even functions, for example, $y = f(x) \ a)$ and $y = f(x) \ d)$:

 $a) \quad f(x) = \frac{1}{x^2}, \quad d) \quad f(x) = \frac{x^2 + 7}{x^2 - 3x^4}, \quad e) \quad f(x) = \frac{1}{|x|}$

- the numerator $P(x) \ \text{and} \ \text{the denominator} \ Q(x)$ are odd functions, for example, $y = h(x) \ d)$:

 $h(x) = \frac{5x^3}{x^7 - 9x^3}$
A rational function \(y = f(x) \) is odd, when

- the numerator \(P(x) \) is odd and the denominator \(Q(x) \) is even, for example:

 \[
 b) \quad g(x) = \frac{x}{x^2 + 1}, \quad h(x) = \frac{5x^3}{x^2 - 16}
 \]

- the numerator \(P(x) \) is even and the denominator \(Q(x) \) is odd, for example:

 \[
 a) \quad f(x) = \frac{1}{x}, \quad c) \quad g(x) = \frac{3}{x^3 - 4x}, \quad e) \quad g(x) = \frac{|x|}{x}
 \]