

Exponential form of complex numbers

Euler's formula

Euler's fomula

$$e^{i\,\phi} = \cos\phi + i\,\sin\phi$$

connects trigonometric functions and complex numbers.

For the angle π we get

$$e^{i\pi} = -1 \Leftrightarrow e^{i\pi} + 1 = 0$$

This fomula provides a remarkable simple connection of 5 very important mathematical constants: Euler's number e, the imaginary unit i of complex numbers, the number π , the unit number 1 and zero, 0.

Most remarkable formula

http://www.cap.ca/wyp/mediaPhysics.asp

Richard Feynman, american physicist and Nobel laureate in 1965, called Euler's formula one of the most remarkable formulas in all of mathematics.

1-3 Precalculus

Most remarkable formula

Richard Feynman (1918-1988)

Richard Feynman, american physicist and Nobel laureate in 1965, called Euler's formula one of the most remarkable formulas in all of mathematics.

Exponential form

trigonometric form

$$z = r (\cos \varphi + i \sin \varphi)$$

$$e^{i\,\Phi} = \cos \Phi + i \sin \Phi$$

exponential form

$$z = r e^{i \, \varphi}$$

Representation of complex numbers: Summary

pair of real numbers:
$$(x, y)$$
: $Re(z) = x$, $Im(z) = y$

$$z = x + i y$$

z = x + i y algebraic (Cartesian) form

polar form: (r, φ) : r – absolute value of z, φ – argument of z

$$z = r (\cos \varphi + i \sin \varphi)$$
 trigonometric form

$$z = r e^{i \varphi}$$

exponential form

complex conjugate:

$$\operatorname{Im}(z^*) = -\operatorname{Im}(z)$$

Exponential form of complex numbers: Exercise

Transform the complex numbers into Cartesian form:

$$a) z = 2e^{i\frac{\pi}{6}}$$

b)
$$z = 2\sqrt{3}e^{i\frac{\pi}{3}}$$

$$c) z = 4e^{3\pi i}$$

$$d) z = 4e^{i\frac{\pi}{2}}$$

$$e) \quad z = \sqrt{2} \ e^{i \frac{3\pi}{4}}$$

$$f) z = 2\sqrt{3}e^{i\frac{2\pi}{3}}$$

$$g) \quad z = \sqrt{3} e^{i \frac{13 \pi}{6}}$$

Exponential form of complex numbers: Solution

a) z:
$$r = 2$$
, $\varphi = \frac{\pi}{6}$, $z = \sqrt{3} + i$

b) z:
$$r = 2\sqrt{3}$$
, $\varphi = \frac{\pi}{3}$, $z = \sqrt{3} + 3i$

c) z:
$$r = 4$$
, $\varphi = 3\pi$, $z = -4$

d) z:
$$r = 4$$
, $\varphi = \frac{\pi}{2}$, $z = 4i$

e) z:
$$r = \sqrt{2}$$
, $\varphi = \frac{3\pi}{4}$, $z = -1 + i$

f) z:
$$r = 2\sqrt{3}$$
, $\varphi = \frac{2\pi}{3}$, $z = -\sqrt{3} + 3i$

$$g$$
) z : $r = \sqrt{3}$, $\varphi = \frac{13\pi}{6}$, $z = \frac{3}{2} + \frac{\sqrt{3}}{2}i$

http://simania.co.il/bookimages/covers76/765785.jpg

3-3 Precalculus