

Exponential form of complex numbers

### Euler's formula

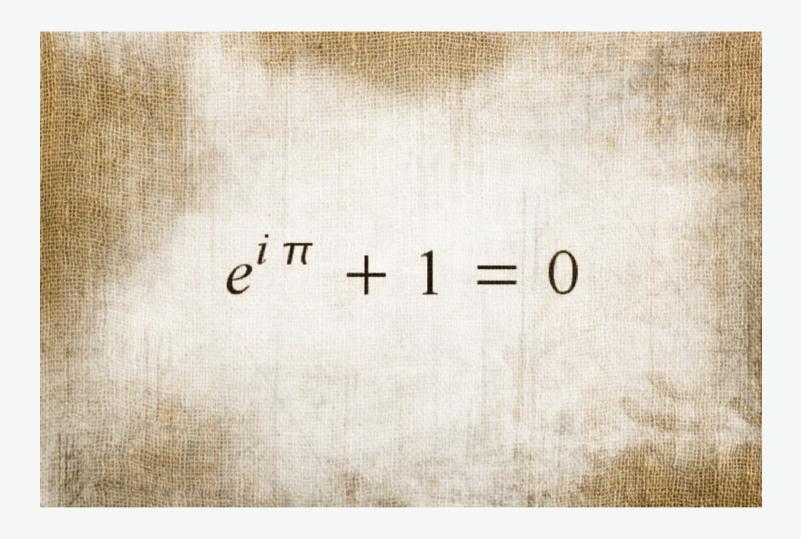
#### Euler's fomula

$$e^{i\,\phi} = \cos\phi + i\,\sin\phi$$

connects trigonometric functions and complex numbers.

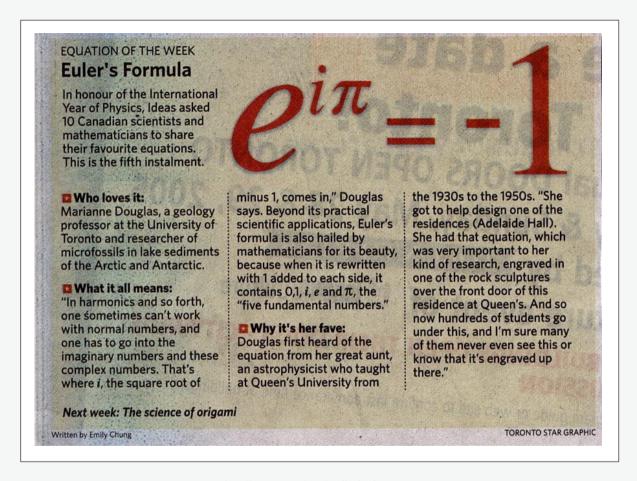
For the angle  $\pi$  we get

$$e^{i\pi} = -1 \Leftrightarrow e^{i\pi} + 1 = 0$$



This fomula provides a remarkable simple connection of 5 very important mathematical constants: Euler's number e, the imaginary unit i of complex numbers, the number  $\pi$ , the unit number 1 and zero, 0.

### Most remarkable formula

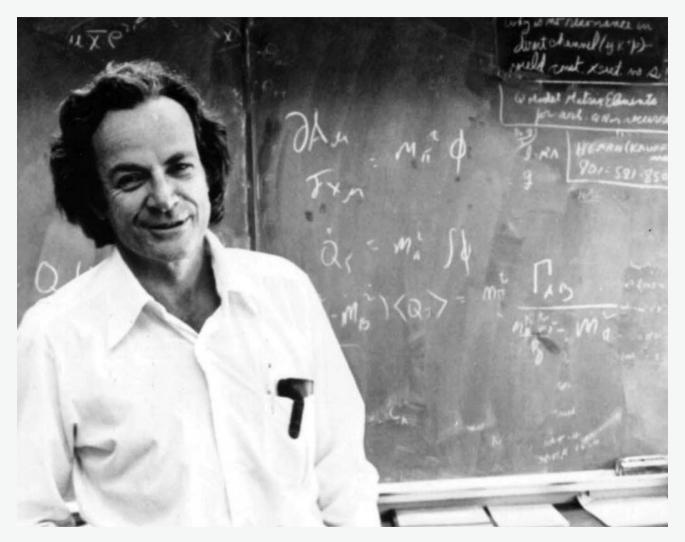


http://www.cap.ca/wyp/mediaPhysics.asp

Richard Feynman, american physicist and Nobel laureate in 1965, called Euler's formula one of the most remarkable formulas in all of mathematics.

1-3 Precalculus

# Most remarkable formula



Richard Feynman (1918-1988)

Richard Feynman, american physicist and Nobel laureate in 1965, called Euler's formula one of the most remarkable formulas in all of mathematics.

# Exponential form

trigonometric form

$$z = r (\cos \varphi + i \sin \varphi)$$



$$e^{i\,\Phi} = \cos \Phi + i \sin \Phi$$



exponential form

$$z = r e^{i \, \varphi}$$

### Representation of complex numbers: Summary

pair of real numbers: 
$$(x, y)$$
:  $Re(z) = x$ ,  $Im(z) = y$ 

$$z = x + i y$$

z = x + i y algebraic (Cartesian) form

polar form:  $(r, \varphi)$ : r – absolute value of z,  $\varphi$  – argument of z

$$z = r (\cos \varphi + i \sin \varphi)$$
 trigonometric form

$$z = r e^{i \varphi}$$

exponential form

complex conjugate:

$$\operatorname{Im}(z^*) = -\operatorname{Im}(z)$$

### Exponential form of complex numbers: Exercise



Transform the complex numbers into Cartesian form:

$$a) z = 2e^{i\frac{\pi}{6}}$$

b) 
$$z = 2\sqrt{3}e^{i\frac{\pi}{3}}$$

$$c) z = 4e^{3\pi i}$$

$$d) z = 4e^{i\frac{\pi}{2}}$$

$$e) \quad z = \sqrt{2} \ e^{i \frac{3\pi}{4}}$$

$$f) z = 2\sqrt{3}e^{i\frac{2\pi}{3}}$$

$$g) \quad z = \sqrt{3} e^{i \frac{13 \pi}{6}}$$

# Exponential form of complex numbers: Solution

a) z: 
$$r = 2$$
,  $\varphi = \frac{\pi}{6}$ ,  $z = \sqrt{3} + i$ 

b) z: 
$$r = 2\sqrt{3}$$
,  $\varphi = \frac{\pi}{3}$ ,  $z = \sqrt{3} + 3i$ 

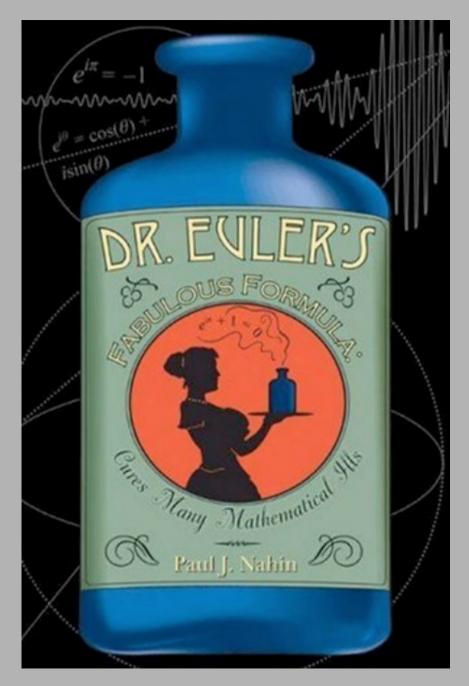
c) z: 
$$r = 4$$
,  $\varphi = 3\pi$ ,  $z = -4$ 

d) z: 
$$r = 4$$
,  $\varphi = \frac{\pi}{2}$ ,  $z = 4i$ 

e) z: 
$$r = \sqrt{2}$$
,  $\varphi = \frac{3\pi}{4}$ ,  $z = -1 + i$ 

f) z: 
$$r = 2\sqrt{3}$$
,  $\varphi = \frac{2\pi}{3}$ ,  $z = -\sqrt{3} + 3i$ 

$$g$$
)  $z$ :  $r = \sqrt{3}$ ,  $\varphi = \frac{13\pi}{6}$ ,  $z = \frac{3}{2} + \frac{\sqrt{3}}{2}i$ 



http://simania.co.il/bookimages/covers76/765785.jpg

3-3 Precalculus