

Relation

Kartesisches Produkt: Aufgabe 1

Stellen Sie eine graphische Veranschaulichung des kartesischen Produktes der Mengen X und Y dar

a)
$$X = \{1, 2, 3, 4\}, Y = \{-1, 0, 1, 2\}$$

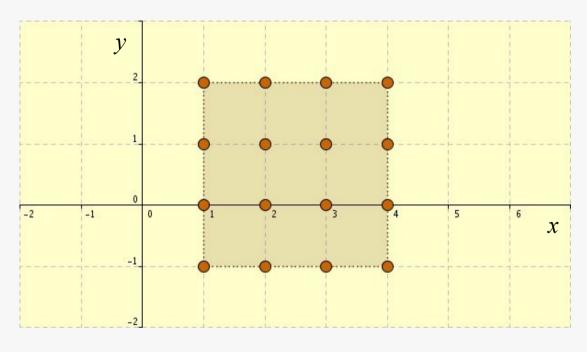
und bestimmen Sie die Elemente der Produktmenge $X \times Y$, die folgende Bedingungen erfühlen

b)
$$M_1 = \{ (x, y) \mid x \in X, y \in Y, y < x \}$$

c)
$$M_2 = \{(x, y) \mid x \in X, y \in Y, y = x - 2\}$$

d)
$$M_3 = \{(x, y) \mid x \in X, y \in Y, |y| = x\}$$

Kartesisches Produkt: Lösung 1a

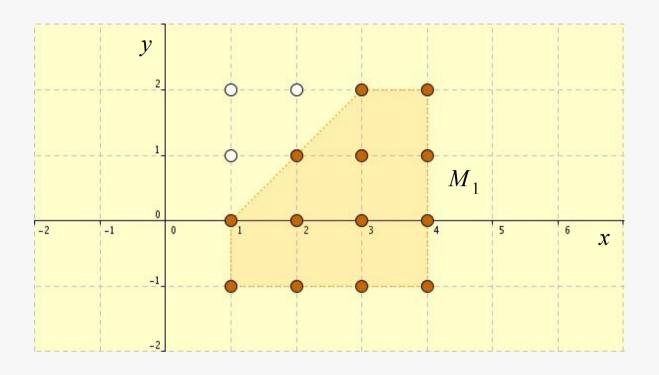


$$X \times Y$$

$$X = \{ 1, 2, 3, 4 \}, \qquad Y = \{ -1, 0, 1, 2 \}$$

$$X \times Y = \{ (1,-1), (1,0), (1,1), (1,2), (2,-1), (2,0), (2,1), (2,2), (3,-1), (3,0), (3,1), (3,2), (4,-1), (4,0), (4,1), (4,2) \}$$

Kartesisches Produkt: Lösung 1

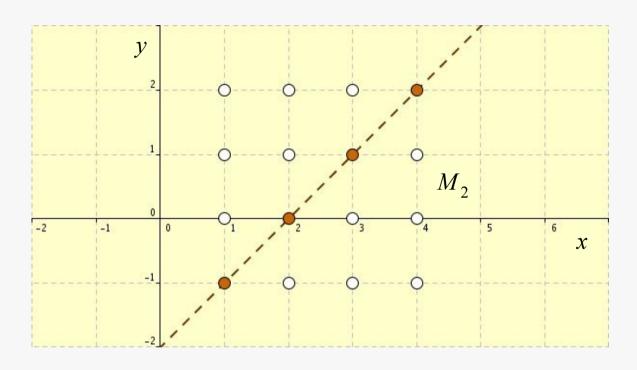


$$X = \{ 1, 2, 3, 4 \}, Y = \{ -1, 0, 1, 2 \}$$

 $M_1 = \{ (x, y) \mid x \in X, y \in Y, y < x \}$

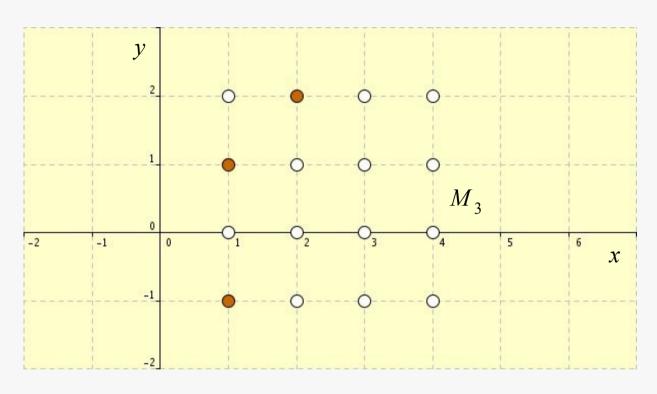
$$M_1 = \{ (1, -1), (1, 0), (2, -1), (2, 0), (2, 1), (3, -1), (3, 0), (3, 1), (3, 2), (4, -1), (4, 0), (4, 1), (4, 2) \}$$

Kartesisches Produkt: Lösung 1



$$X = \{ 1, 2, 3, 4 \},$$
 $Y = \{ -1, 0, 1, 2 \}$
 $M_2 = \{ (x, y) \mid x \in X, y \in Y, y = x - 2 \}$
 $M_2 = \{ (1, -1), (2, 0), (3, 1), (4, 2) \}$

Kartesisches Produkt: Lösung 1



$$X = \{ 1, 2, 3, 4 \}, \qquad Y = \{ -1, 0, 1, 2 \}$$

$$M_3 = \{ (x, y) \mid x \in X, y \in Y, |y| = x \}$$

$$M_2 = \{ (1, -1), (1, 1), (2, 2) \}$$

Relation

Definition:

X und Y seien zwei Mengen. Eine Teilmenge R des kartesischen Produktes von X und Y heißt eine <u>Relation</u> zwischen den Elementen der Menge X und den Elementen der Menge Y. Ist X = Y, so heißt R <u>Relation auf X</u>.

Eine Relation ist eine <u>Vorschrift</u> (Bedingung), welche eine Teilmenge von *X* und *Y* beschreibt. Diese kann man festlegen, indem man eine mathematische Bedingung vorschreibt, die zwischen den Elementen aus den beiden Mengen gilt.

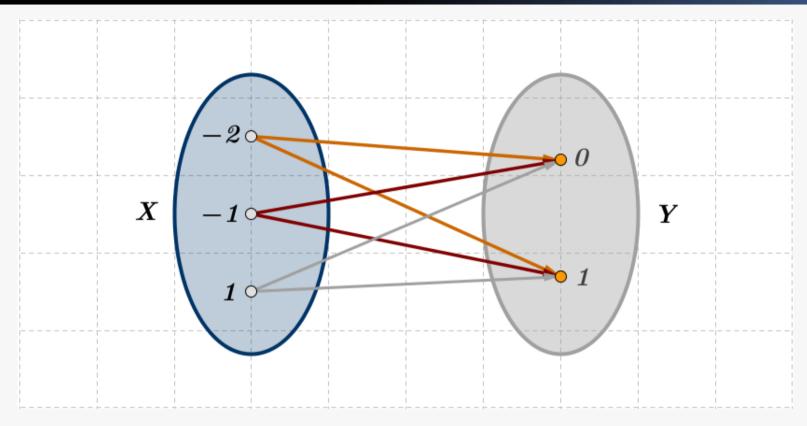


Abb. A2: Graphische Darstellung des Kartesischen Produktes A x B

$$X = \{-2, -1, 1\}, \quad Y = \{0, 1\}$$

Das kartesische Produkt der Mengen A und B besteht aus 6 Elementen, 6 geordneten Paaren.

$$X \times Y = \{(-2, 0), (-2, 1), (-1, 0), (-1, 1), (1, 0), (1, 1)\}$$

Bestimmen Sie folgende Relationen zwischen den Elementen der Menge X und den Elementen der Menge Y:

$$\begin{split} X &= \{-2, -1, \, 1\}, \qquad Y = \{\, 0, \, 1\,\} \\ R_1 &= \{\, (-2, \, 0), \, (-2, \, 1), \, (-1, \, 0), \, (-1, \, 1)\,\} \subset X \times Y \\ R_2 &= \{\, (1, \, 0), \, (1, \, 1)\,\} \subset X \times Y \\ R_3 &= \{\, (1, \, 1)\,\} \subset X \times Y \\ R_4 &= \{\, (-2, \, 0), \, (-1, \, 1)\,\} \subset X \times Y \\ R_5 &= \{\, (-1, \, 1), \, (1, \, 1)\,\} \subset X \times Y \end{split}$$

Relation: Lösung 2

$$X = \{-2, -1, 1\}, \quad x \in X, \qquad Y = \{0, 1\}, \quad y \in Y$$

$$R_1 = \{(-2, 0), (-2, 1), (-1, 0), (-1, 1)\}, \qquad R_1 : x < y$$

$$R_2 = \{(1, 0), (1, 1)\}, \qquad R_2 : x \geqslant y$$

$$R_3 = \{(1, 1)\}, \qquad R_3 : x = y$$

$$R_4 = \{(-2, 0), (-1, 1)\}, \qquad R_4 : x + 2 = y$$

$$R_5 = \{(-1, 1), (1, 1)\}, \qquad R_5 : |x| = y, \quad x^2 = y$$

$$R_6 = \{(-2, 1)\}, \qquad R_6 : x + 3 = y$$

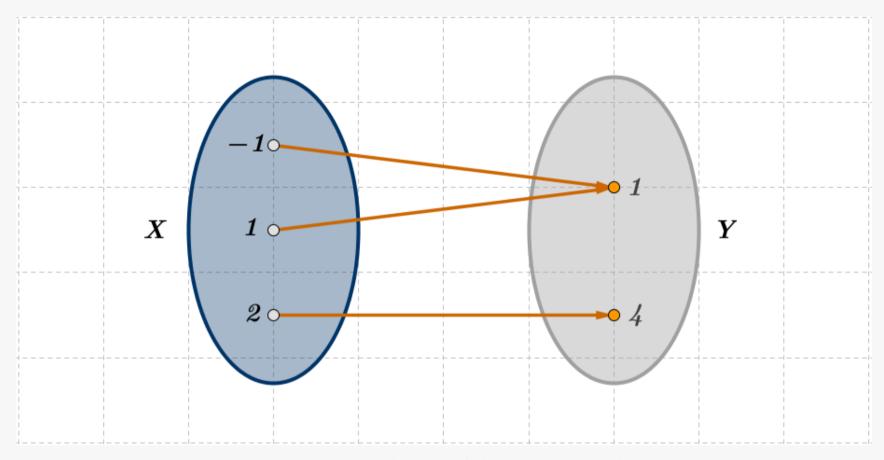


Abb. A3: Eine Relation auf den Menge X und Y

Beschreiben Sie die in der Abbildung dargestellte Relation zwischen den Mengen X und Y

$$X = \{-1, 1, 2\}, Y = \{1, 4\}$$

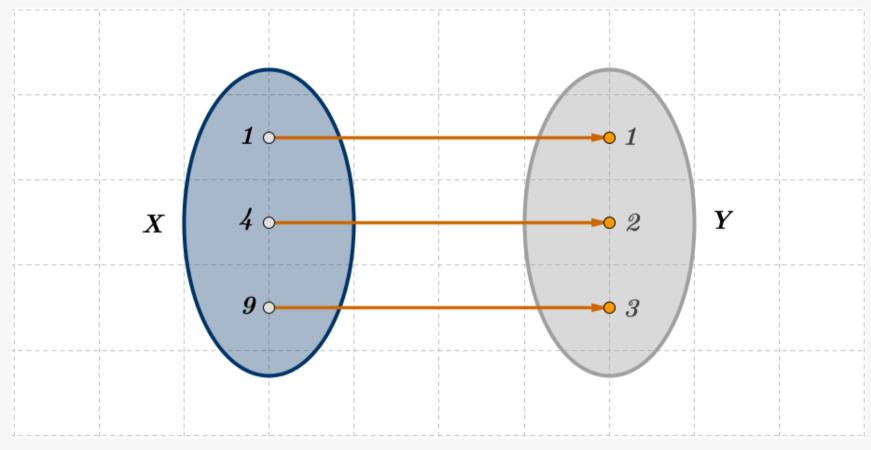


Abb. A4: Eine Relation auf den Menge X und Y

Beschreiben Sie die in der Abbildung dargestellte Relation zwischen den Mengen X und Y

$$X = \{1, 4, 9\}, \qquad Y = \{1, 2, 3\}$$

Relation: Lösungen 3, 4

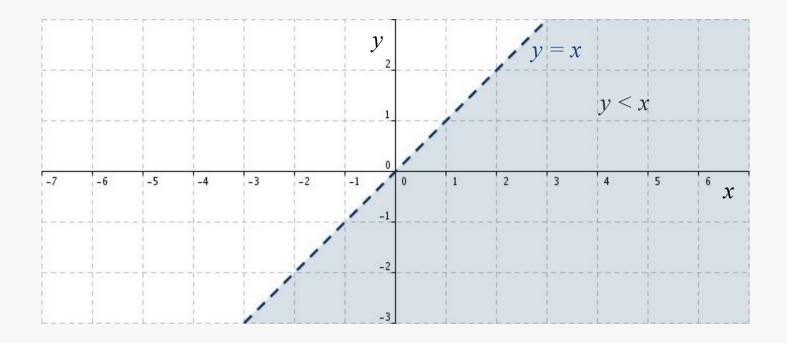
Lösung 3:
$$R = \{(-1, 1), (1, 1), (2, 4)\}, R: x^2 = y$$

Lösung 4:
$$R = \{(1, 1), (4, 2), (9, 3)\}, R : \sqrt{x} = y$$

Zeichnen Sie die folgenden Relationen für Mengen X und Y $X = \mathbb{R}$, $Y = \mathbb{R}$

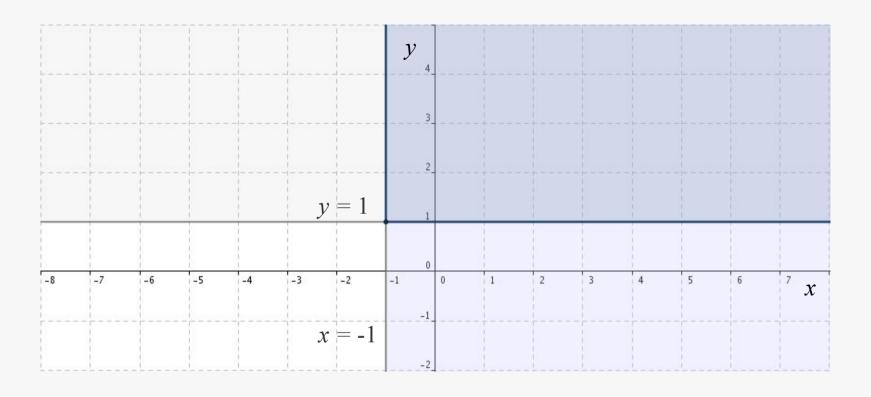
- a) y < x
- b) $x \ge -1$, $y \ge 1$
- c) $y \ge x^2$
- $d) \quad x^2 + y^2 \le 4$
- (e) $x^2 + y^2 \le 4$, $x \ge 0$, $y \ge 0$
- $f) \quad x^2 + y^2 \le 9, \quad y \le 0$
- g) y > |x|

Relation: Lösung 5a



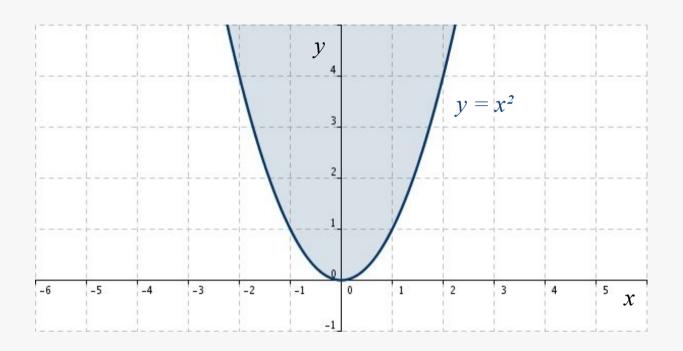
Die Gerade y = x bildet die Trennlinie. Alle y-Werte unterhalb dieser Linie erfüllen die Relationsbedingung. Somit wird die Relation durch das Gebiet unterhalb der Gerade y = x dargestellt.

Relation: Lösung 5b



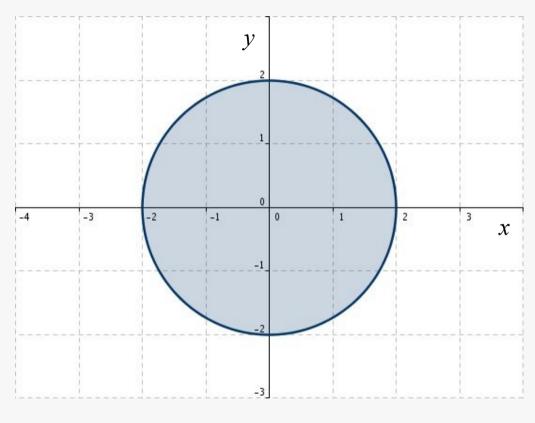
$$x \ge -1, \quad y \ge 1$$

Relation: Lösung 5c



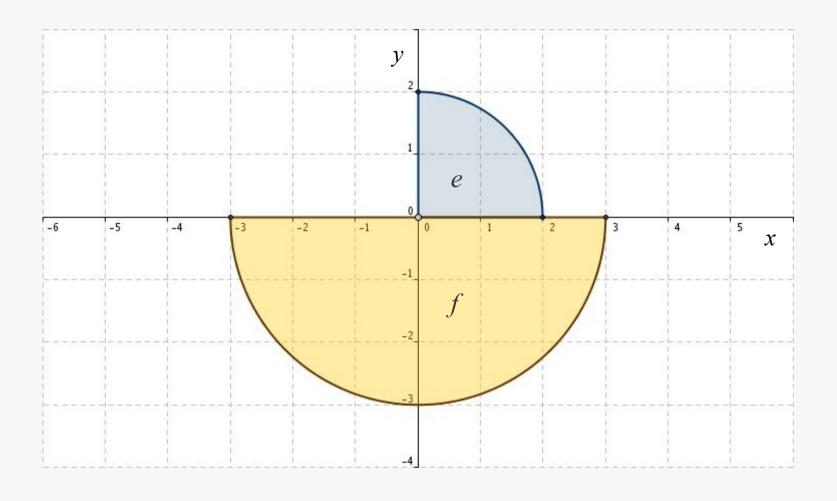
Alle y-Werte oberhalb und auf der Parabel erfüllen die Relationsbedingung $y \ge x^2$.

Relation: Lösung 5d



$$x^2 + y^2 \le 4$$

Relation: Lösung 5e,f



$$(e)$$
 $x^2 + y^2 \le 4$, $x \ge 0$, $y \ge 0$

$$f) \quad x^2 + y^2 \le 9, \quad y \le 0$$

Relation: Lösung 5g

