Definitionsbereich und Wertebereich: Aufgaben
Bestimmen Sie den Definitions- und den Wertebereich der folgenden Funktionen:

Aufgabe 1: \(f(x) = x - 2, \quad g(x) = -2x \)

Aufgabe 2: \(f(x) = x^2 - 4, \quad g(x) = -x^2 + 4 \)

Aufgabe 3: \(f(x) = x^2 - 2, \quad g(x) = -0.5x^2 + 2x \)

Aufgabe 4: \(f(x) = x^3, \quad g(x) = -x^3 + 4x^2 - 4x \)

Aufgabe 5: \(f(x) = \sqrt{x}, \quad g(x) = \sqrt{x} - 2 \)

Aufgabe 6: \(f(x) = \sqrt{x + 2}, \quad g(x) = \sqrt{x - 2} + 1 \)
Aufgabe 7: \(f(x) = \sin x, \quad g(x) = -2 \sin x \)

Aufgabe 8: \(f(x) = \cos x, \quad g(x) = \cos^2 x \)

Aufgabe 9: \(f(x) = e^x, \quad g(x) = e^x - 2 \)

Aufgabe 10: \(f(x) = e^{-x}, \quad g(x) = e^{-x} + 2 \)

Aufgabe 11: \(f(x) = 2e^x, \quad g(x) = \frac{1}{e^x + 1} \)

Aufgabe 12: \(f(x) = |x|, \quad g(x) = |x - 2| \)

Aufgabe 13: \(f(x) = |x| - 2, \quad g(x) = |x - 3| - 1 \)
Definitionsbereich und Wertebereich: Lösung 1

Abb. L1: Lineare Funktionen $y = f(x)$ und $y = g(x)$

\[f(x) = x - 2, \quad g(x) = -2x \]

\[D(f) = D(g) = \mathbb{R}, \quad W(f) = W(g) = \mathbb{R} \]
Abb. L2: Quadratische Funktionen $y = f(x)$ und $y = g(x)$

$$f(x) = x^2 - 4, \quad g(x) = -x^2 + 4$$

$$f(x) = x^2 - 4, \quad D(f) = \mathbb{R}, \quad W(f) = [-4, \infty)$$

$$g(x) = -x^2 + 4, \quad D(g) = \mathbb{R}, \quad W(g) = (-\infty, 4]$$
Abbildung L3: Quadratische Funktionen \(y = f(x) \) und \(y = g(x) \)

\[f(x) = x^2 - 2, \quad D(f) = \mathbb{R}, \quad W(f) = [-2, \infty) \]

\[g(x) = -0.5x^2 + 2x, \quad D(g) = \mathbb{R}, \quad W(g) = (-\infty, 2] \]
Abb. L4: Kubische Funktionen \(y = f(x) \) und \(y = g(x) \)

\[
f(x) = x^3, \quad D(f) = \mathbb{R}, \quad W(f) = \mathbb{R}
\]

\[
g(x) = -x^3 + 4x^2 - 4x, \quad D(g) = \mathbb{R}, \quad W(g) = \mathbb{R}
\]
Abb. L5: Wurzelfunktionen \(y = f(x) \) und \(y = g(x) \)

\[
\begin{align*}
 f(x) &= \sqrt{x}, & D(f) &= [0, \infty), & W(f) &= [0, \infty) \\
 g(x) &= \sqrt{x - 2}, & D(g) &= [2, \infty), & W(g) &= [0, \infty)
\end{align*}
\]
Definitionsbereich und Wertebereich: Lösung 6

Abb. L6: Wurzelfunktionen $y = f(x)$ und $y = g(x)$

$f(x) = \sqrt{x + 2}$, $D(f) = [-2, \infty)$, $W(f) = [0, \infty)$

$g(x) = \sqrt{x - 2} + 1$, $D(g) = [2, \infty)$, $W(g) = [1, \infty)$
Definitionsbereich und Wertebereich: Lösung 7

Abb. L7: Trigonometrische Funktionen $y = f(x)$ und $y = g(x)$

$$f(x) = \sin x, \quad D(f) = \mathbb{R}, \quad W(f) = [-1, 1]$$

$$g(x) = -2 \sin x, \quad D(g) = \mathbb{R}, \quad W(g) = [-2, 2]$$
Definitionsbereich und Wertebereich: Lösung 8

Abb. L8: Trigonometrische Funktionen \(y = f(x) \) und \(y = g(x) \)

\[
f(x) = \cos x, \quad D(f) = \mathbb{R}, \quad W(f) = [-1, 1]
g(x) = \cos^2 x, \quad D(g) = \mathbb{R}, \quad W(g) = [0, 1]
\]
Definitionsbereich und Wertebereich: Lösung 9

Abb. L9: Exponentialfunktionen \(y = f(x) \) und \(y = g(x) \)

\[
\begin{align*}
 f(x) &= e^x, & D(f) &= \mathbb{R}, & W(f) &= (0, \infty) \\
 g(x) &= e^x - 2, & D(g) &= \mathbb{R}, & W(g) &= (-2, \infty)
\end{align*}
\]
Abb. L10: Exponentialfunktionen $y = f(x)$ und $y = g(x)$

$$f(x) = e^{-x}, \quad D(f) = \mathbb{R}, \quad W(f) = (0, \infty)$$

$$g(x) = e^{-x} + 2, \quad D(g) = \mathbb{R}, \quad W(g) = (2, \infty)$$
Abb. L11: Exponentialfunktionen $y = f(x)$ und $y = g(x)$

\[
\begin{align*}
 f(x) &= 2e^x, & D(f) &= \mathbb{R}, & W(f) &= (0, \infty) \\
 g(x) &= \frac{1}{e^x + 1}, & D(g) &= \mathbb{R}, & W(g) &= (0, 1)
\end{align*}
\]
Definitionsbereich und Wertebereich: Lösung 12

Abb. L12: Betragsfunktionen $y = f(x)$ und $y = g(x)$

$f(x) = |x|, \quad D(f) = \mathbb{R}, \quad W(f) = [0, \infty)$

$g(x) = |x - 2|, \quad D(g) = \mathbb{R}, \quad W(g) = [0, \infty)$
Definitionsbereich und Wertebereich: Lösung 13

Abb. L13-1: Betragsfunktion \(y = |x| - 2 \)

\[f(x) = |x| - 2, \quad D(f) = \mathbb{R}, \quad W(f) = [-2, \infty) \]
Definitionsbereich und Wertebereich: Lösung 13

Abb. L13-2: Betragsfunktion \(y = |x - 3| - 1 \)

\[g(x) = |x - 3| - 1, \quad D(g) = \mathbb{R}, \quad W(g) = [-1, \infty) \]