Folgen, Reihen
Index

Konvergenzkriterien
 Hauptkriterium, 21
 Leibniz-Kriterium, 23
 Majorantenkriterium, 24
 Minorantenkriterium, 23
 notwendiges Kriterium, 20
 Quotientenkriterium, 21
 teleskopierende Summe, 21
 Wurzelkriterium, 22

Majorante, 24
Minorante, 23

Partialsumme, 17

Reihe
 absolut konvergente Reihe, 17
 alternierende harmonische Reihe, 19
 alternierende Reihe, 17
 Definition, 17
 divergent, 17
 geometrische Reihe, 18, 19
 harmonische, 20
 konvergent, 17
 Leibniz-Reihe, 19
Inhaltsverzeichnis

1 Formeln
1. Rechenregel für Potenzen .. 1
2. Rechenregel für Wurzeln .. 1
3. Binomische Formel .. 1

2 Folgen
1. Grenzwert einer Folge ... 2
 1.1. Rechenregeln für Grenzwerte 2
 1.1.1. Einschließungskriterium .. 2
 1.1.2. Das Rechnen mit Nullfolgen 2
 1.2. Liste einiger Grenzwerte .. 3
2. Grenzwert einer Folge ... 3
 2.1. Beispiele ... 3
 2.2. Aufgaben .. 6
 2.3. Lösungen .. 9
3. Tests ... 14
 3.1. Test 1 ... 14
 3.1.1. Test 1, Lösungen .. 15

3 Reihen
1. Reihen, Konvergenz von Reihen ... 16
 1.1. Rechenregeln für Reihen .. 17
2. Geometrische Reihe .. 17
 2.1. Aufgaben .. 18
3. Harmonische Reihe .. 18
4. Reihen, Beispiele .. 19
5. Konvergenzkriterien ... 20
| 5.1. | Notwendiges Kriterium für Konvergenz | 20 |
| 5.2. | Hauptkriterium | 21 |
| 5.3. | Quotientenkriterium | 21 |
| 5.4. | Wurzelkriterium | 22 |
| 5.5. | Leibniz-Kriterium | 23 |
| 5.6. | Minorantenkriterium | 24 |
| 5.7. | Majorantenkriterium | 24 |
| 5.8. | Konvergenzkriterien: Zusammenfassung, Notation | 25 |
| 6. | Beispiele | 25 |
| 7. | Aufgaben | 27 |
| 7.1. | Konvergenz einer Reihe | 27 |
| 8. | Lösungen | 30 |
| 8.1. | Geometrische Reihe | 30 |
| 8.2. | Konvergenzkriterien | 30 |
Kapitel 1

Formeln

1. Rechenregel für Potenzen
Für $a, b \neq 0$ gilt:

Regel 1: $b^n \cdot b^m = b^{n+m}$ (1.1)
Regel 2: $\frac{b^n}{b^m} = b^{n-m}$, (1.2)
Regel 3: $(b^n)^m = b^{n \cdot m}$ (1.3)
Regel 4: $a^n \cdot b^n = (a \cdot b)^n$, (1.4)
Regel 5: $a^n \cdot \frac{1}{b^n} = (\frac{a}{b})^n$ (1.5)
Regel 6: $b^0 = 1, \quad b^{-n} = \frac{1}{b^n}$. (1.6)

2. Rechenregel für Wurzeln
Wurzeln als Potenzen mit gebrochenen Exponenten. Für $a, b \geq 0$ gilt:

$a^{\frac{m}{n}} = \sqrt[n]{a^m}$, \quad $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$ (1.7)

$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$ (b ≠ 0), \quad $n\sqrt[n]{a} \cdot m\sqrt[n]{a} = \sqrt[n]{a^{m+n}}$. (1.8)

3. Binomische Formel

$(a + b)^2 = a^2 + 2ab + b^2$, \quad $(a - b)^2 = a^2 - 2ab + b^2$, (1.9)

$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$, \quad $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$, (1.10)

$a^2 - b^2 = (a - b)(a + b)$, \quad $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$. (1.11)
Kapitel 2

Folgen

1. Grenzwert einer Folge

1.1. Rechenregeln für Grenzwerte

Seien a_n und b_n konvergente Folgen und sei c eine konstante Zahl, dann gilt:

\[
\lim_{n\to\infty} a_n = a, \quad \lim_{n\to\infty} b_n = b, \\
\lim_{n\to\infty} (c \cdot a_n) = c \lim_{n\to\infty} a_n = c \cdot a, \\
\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n = a \pm b, \\
\lim_{n\to\infty} (a_n \cdot b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n = a \cdot b, \\
\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n} = \frac{a}{b}, \quad b_n \neq 0, \\
\lim_{n\to\infty} \sqrt{a_n} = \sqrt{\lim_{n\to\infty} a_n} = \left(\lim_{n\to\infty} a_n \geq 0\right). \quad (2.1)
\]

1.1.1. Einschließungskriterium

Es seien a_n, b_n und c_n reelle Zahlenfolgen mit folgenden Eigenschaften:

\[
\lim_{n\to\infty} a_n = a, \quad \lim_{n\to\infty} c_n = a, \quad \forall n \geq n_0 : a_n \leq b_n \leq c_n.
\]

Dann konvergiert die Folge b_n gegen a:

\[
\lim_{n\to\infty} b_n = a. \quad (2.6)
\]

1.1.2. Das Rechnen mit Nullfolgen

Falls eine Folge eine Nullfolge und eine andere eine beschränkte Folge ist, ist das Produkt von beiden Folgen eine Nullfolge:

\[
\lim_{n\to\infty} a_n = 0, \quad \lim_{n\to\infty} b_n = b, \quad \lim_{n\to\infty} (a_n \cdot b_n) = 0. \quad (2.7)
\]
1.2. Liste einiger Grenzwerte

\[
\lim_{n \to \infty} \frac{1}{n} = 0, \quad (2.8)
\]

\[
\lim_{n \to \infty} q^n = 0, \quad |q| < 1 \quad (2.9)
\]

\[
\lim_{n \to \infty} \sqrt[n]{a} = 1, \quad \lim_{n \to \infty} \sqrt[n]{n} = 1 \quad (a \in \mathbb{R}, \quad a > 0), \quad (2.10)
\]

\[
\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e, \quad \lim_{n \to \infty} (1 + u)^{\frac{1}{n}} = e, \quad \lim_{n \to \infty} \left(1 + \frac{c}{n}\right)^n = e^c \quad (c \in \mathbb{R}). \quad (2.11)
\]

2. Grenzwert einer Folge

2.1. Beispiele

B1

\[
\lim_{n \to \infty} \frac{3n - 5}{n} = \lim_{n \to \infty} \frac{\frac{1}{n}(3n - 5)}{9n + 12} = \lim_{n \to \infty} \frac{3 - \frac{5}{n}}{9 + \frac{12}{n}} = \lim_{n \to \infty} \frac{\left(\frac{3}{n} - \frac{5}{n}\right)}{\left(9 + \frac{12}{n}\right)} = \lim_{n \to \infty} \frac{3}{9} - \lim_{n \to \infty} \frac{5}{12} = \frac{3}{9} - \frac{5}{12} = \frac{1}{3}.
\]

B2

\[
\lim_{n \to \infty} \frac{(n + 2)(n + 3)}{(2n + 1)(3n + 1)} = \lim_{n \to \infty} \frac{\frac{1}{n^2}(n + 2)(n + 3)}{2n + 3n} = \lim_{n \to \infty} \frac{\left(1 + \frac{2}{n}\right)(1 + \frac{3}{n})}{2 + \frac{3}{n}} = \frac{1}{6}.
\]

B3

\[
\lim_{n \to \infty} \frac{(3n - 1)(n^2 - 4)}{(n + 2)(n^2 + 9)} = \lim_{n \to \infty} \frac{\left(3n - \frac{1}{n}\right)(n - 2)}{(n + 2)(n^2 + 9)} = \lim_{n \to \infty} \frac{3 - \frac{1}{n}}{\left(1 + \frac{2}{n}\right)} = 3.
\]

B4

\[
\lim_{n \to \infty} \left(\frac{5n - 9}{9 + 2n}\right)^2 = \lim_{n \to \infty} \left(\frac{9 - \frac{9}{n} + 2}{9 + \frac{2}{n} + 2}\right)^2 = \left(\lim_{n \to \infty} \left(\frac{9 - \frac{9}{n} + 2}{9 + \frac{2}{n} + 2}\right)\right)^2 = \left(\frac{5}{2}\right)^2 = \frac{25}{4}.
\]

B5

\[
\lim_{n \to \infty} \frac{(n - 2)^3 - (3 - 2n)^3}{3n^3 + 12n - 7} = \lim_{n \to \infty} \frac{9n^3 - 42n^2 + 66n - 35}{3n^3 + 12n - 7} = \lim_{n \to \infty} \frac{9 - \frac{42}{n} + \frac{66}{n^2} - \frac{35}{n^3}}{3 + \frac{12}{n} - \frac{7}{n^3}} = 3.
\]
Man kann den Grenzwert dieser Folge auch bestimmen, indem man \(n \) aus den Termen \((n - 2)^3\) und \((3 - 2n)^3\) ausklammert und Zähler und Nenner durch \(n^3 \) dividiert.

\[
(n - 2)^3 = n^3 \left(1 - \frac{2}{n}\right)^3, \quad (3 - 2n)^3 = n^3 \left(\frac{3}{n} - 2\right)^3,
\]

\[
\lim_{n \to \infty} \frac{(n - 2)^3 - (3 - 2n)^3}{3n^3 + 12n - 7} = \lim_{n \to \infty} \frac{n^3 \left(1 - \frac{2}{n}\right)^3 - n^3 \left(\frac{3}{n} - 2\right)^3}{3 + \frac{12}{n^2} - \frac{7}{n^3}} = \lim_{n \to \infty} \frac{\left(1 - \frac{2}{n}\right)^3 - \left(\frac{3}{n} - 2\right)^3}{3 + \frac{12}{n^2} - \frac{7}{n^3}} = \frac{1 - (-8)}{9} = 3.
\]

B6

\begin{align*}
a) \lim_{n \to \infty} a_n &= \lim_{n \to \infty} \frac{6 \cdot 4^n}{4^{n+1} - 3} = \lim_{n \to \infty} \frac{6 \cdot 4^n}{4 \cdot 4^n - 3} = \lim_{n \to \infty} \frac{6}{4 - \frac{3}{4^n}} = \frac{3}{2}.
\end{align*}

Die Folge \(a_n \) hat eine Potenz mit Basis 4 im Nenner und im Zähler. Durch Division von Nenner und Zähler mit \(4^n \) hat \(a_n \) eine Konstante im Zähler und eine Konstante mit Nullfolge im Nenner.

\begin{align*}
b) \lim_{n \to \infty} b_n &= \lim_{n \to \infty} \frac{3^n + 2 \cdot 5^n}{5^n + 1 - 17} = \lim_{n \to \infty} \frac{9 \cdot 3^n + 3 \cdot 5^n}{5 \cdot 5^n - 17} = \lim_{n \to \infty} \frac{1}{\frac{9}{5^n} \left(9 \cdot 3^n + 3 \cdot 5^n\right)} = \lim_{n \to \infty} \frac{9 \left(\frac{3}{5}\right)^n + 3}{5 - \frac{17}{5^n}} = \frac{3}{5}.
\end{align*}

In der Folge \(b_n \) haben wir Potenzen mit \(n \) im Exponenten mit Basen 3 und 5. Bei solchen Aufgaben teilt man den Ausdruck durch die Potenz mit der größten Basis.

\begin{align*}
c) \lim_{n \to \infty} \frac{5 \cdot 4^n + 2^{n+4}}{2^{n+3} - 2 \cdot 4^n} &= \lim_{n \to \infty} \frac{5 \cdot 4^n - 16 \cdot 2^n}{8 \cdot 2^{2n} - 2 \cdot 4^n} = \lim_{n \to \infty} \frac{20 \cdot 4^n - 16 \cdot 2^n}{8 \cdot 4^n - 2 \cdot 4^n} = \lim_{n \to \infty} \frac{20 - 16 \left(\frac{1}{2}\right)^n}{8 - 2} = \frac{10}{3}.
\end{align*}

B7

\[
a_n = \cos(\pi n), \quad b_n = \sin\left(\frac{\pi n}{2}\right), \quad c_n = \cos\left(\frac{\pi n}{2}\right).
\]

Die Folgen \(a_n, b_n \) und \(c_n \) sind divergent. Die Folge \(a_n \) hat die beiden Häufungspunkte \(-1\) und \(0\), die Folgen \(b_n \) und \(c_n \) haben die drei Häufungspunkte 0, -1 und 1.

B8

\[
a_n = \frac{\cos^2(n)}{n + 9}, \quad 0 \leq \cos^2(n) \leq \frac{1}{n + 9}, \quad \lim_{n \to \infty} \frac{1}{n + 9} = 0 \implies \lim_{n \to \infty} a_n = 0.
\]

B9

\[
a_n = \frac{3 - \cos(\pi n)}{3 + \cos(\pi n)}, \quad a_{2k} = \frac{3 - \cos(2\pi k)}{3 + \cos(2\pi k)}, \quad a_{2k+1} = \frac{3 - \cos(\pi(2k + 1))}{3 + \cos(\pi(2k + 1))},
\]

\[
\lim_{k \to \infty} a_{2k} = \frac{1}{2}, \quad \lim_{k \to \infty} a_{2k+1} = 2.
\]

Die Folge \(a_n \) ist divergent. Sie hat die beiden Häufungspunkte 1/2 und 2.
In der Klammer steht dann die Summe der natürlichen Zahlen von 1 bis \(n \):

\[
\lim_{n \to \infty} \left(\frac{n}{\sqrt{n^2 + n}} \right) = \sqrt{n^2 + n} = \sqrt{n^2 + n} = n.
\]

Dadurch kann man eine arithmetische Folge mit der konstanten Differenz \(d = 1 \) aus dem Produkt von \(a_1 = 1 \) und \(n \)-ter Partialsumme einer arithmetischen Folge mit \(m \) Gliedern ist \(S_m = (b_1 + b_m) \cdot m/2 \), also

\[
1 + 2 + 3 + \ldots + (n - 1) = \frac{1 + (n - 1)}{2} \cdot (n - 1) = \frac{n}{2} \cdot (n - 1)
\]

Um den Grenzwert dieser Folge zu bestimmen, wird der gemeinsame Faktor \(1/n^2 \) ausgeklammert.
2.2. Aufgaben

Bestimmen Sie die Grenzwerte folgender Folgen für \(n \to \infty \):

A1

\[
\begin{align*}
 a_n &= \frac{1}{n + 4}, \\
 b_n &= \frac{1}{n + 2} - \frac{1}{n + 3}, \\
 c_n &= \frac{1}{2n +} \frac{n}{n + 5} - \frac{1}{n^2}.
\end{align*}
\]

A2

\[
\begin{align*}
 a_n &= \frac{2n - 9}{7 - 8n}, \\
 b_n &= \frac{2n^2 - 1}{4n^2 + 8}, \\
 c_n &= \frac{7 - 6n^2}{11n + 26n^2}, \\
 d_n &= \frac{1 - 2n + 3n^2}{11 + 22n + 33n^2}.
\end{align*}
\]

A3

\[
\begin{align*}
 a_n &= \frac{6n^3 - 12n + 11}{8n^3 - 5n^2 + 14}, \\
 b_n &= \frac{(3 - n)^3}{(2n + 1)^2(7 - 3n)}, \\
 c_n &= \frac{(n^2 - 3)(n^2 + 3)}{n(3 - n)(3 - 6n^2)}.
\end{align*}
\]

A4

\[
\begin{align*}
 a_n &= \left(\frac{2n - 3}{n + 5} \right)^2, \\
 b_n &= \left(\frac{7 - 5n}{n + 12} \right)^3, \\
 c_n &= \left(\frac{3 - n^2}{9 + 6n^2} \right)^2, \\
 d_n &= \left(\frac{14 - 7n}{2n + 16} \right)^4.
\end{align*}
\]

A5

\[
\begin{align*}
 a_n &= \left(\frac{n - 3}{2n + 7} \right) \left(\frac{4 - n}{4 + 5n} \right), \\
 b_n &= \frac{(2 - 2n)(3 - 3n)}{(4n + 4)(5n + 5)}, \\
 c_n &= \frac{(7 - 2n)(4n^2 - 9)}{(2n - 3)(2 - 7n^2)}.
\end{align*}
\]

Bestimmen Sie die Grenzwerte folgender Folgen für \(n \to \infty \):

A6

\[
\begin{align*}
 a_n &= \frac{(n - 3)^2 - (n + 3)^2}{3n^2 + 3n - 1}, \\
 b_n &= \frac{(n - 2)^3 - (2 - 3n)^3}{14n^3 - 7n}, \\
 c_n &= \frac{8n^3 - (3 - 2n)^3}{(1 + n)^3 + 5n^2}.
\end{align*}
\]

A7

\[
\begin{align*}
 a_n &= \frac{(3 - 4n)^2}{(n - 2)^3 - (n + 2)^3}, \\
 b_n &= \frac{(3 - 4n)^2}{(n - 2)^3 - (1 + 2n)^3}, \\
 c_n &= \frac{(3 - 4n)^3}{(n - 2)^3 - (n + 2)^3}, \\
 d_n &= \frac{(1 - 2n)^3}{(1 - n)^3 - (n + 1)^3}.
\end{align*}
\]

A8

\[
\begin{align*}
 a_n &= (-1)^n, \\
 b_n &= (-1)^n \cdot n, \\
 c_n &= n^{(-1)^n}.
\end{align*}
\]
A9

a) \(a_n = \frac{1 + (-1)^n}{n} \), \(b_n = \frac{(-1)^{n+1}}{n^2} \), \(c_n = \frac{7 + (-1)^n \cdot 4}{n} \), \(d_n = \frac{25n + (-1)^{n-1} \cdot 100}{n^2 + 25n} \),

b) \(a_n = \frac{6n + (-1)^n \cdot 2}{12n} \), \(b_n = \frac{6 + (-1)^n \cdot 2n}{12n} \), \(c_n = \frac{6n^3 + (-1)^n \cdot 2n}{12n^2} \).

A10 Bestimmen Sie den Grenzwert der Folge \(a_n \)

\[a_n = \sqrt{\frac{3 + n - 1}{n + 1}}. \]

Bestimmen Sie die Grenzwerte folgender Folgen für \(n \to \infty \):

A11

\[a_n = \sqrt{4n^2 + n - 2n}, \quad b_n = \sqrt{9n^2 - n - 3n}, \quad c_n = \sqrt{n^4 - n^2 - n^2}. \]

A12

\[a_n = \sqrt{3n + 3 - 2n - 2}, \quad b_n = \sqrt{3n + 3 - \sqrt{3n - 2}}, \quad c_n = \sqrt{n^2 + n + 1 - \sqrt{n^2 - n + 1}}. \]

A13

\[a_n = \sqrt{n^2 + 1 - \sqrt{n^2 - 1}}, \quad b_n = \sqrt{n(n + 2) - \sqrt{n^2 - 3n + 5}}, \quad c_n = \sqrt{(n + 1)(n + 2) - \sqrt{(n - 1)(n + 4)}}, \quad d_n = \sqrt{n \left(\sqrt{n + 1} - \sqrt{n - 4} \right)}. \]

A14

\[a_n = \frac{1}{\sqrt{n}}, \quad b_n = \frac{1}{\sqrt{3n - 1}}, \quad c_n = \frac{5n}{\sqrt{5n^2 - n}}, \quad d_n = \frac{3n}{\sqrt{12n^2 + 2n}}. \]

A15

\[a_n = \frac{1}{3n}, \quad b_n = \frac{1}{5n - 1}, \quad c_n = \frac{1}{4n} \cdot \frac{3n - 2}{n}, \quad d_n = \left(-\frac{1}{2} \right) \cdot \frac{7n + 1}{n}. \]

A16

\[a_n = \frac{8 \cdot 5^n}{2 \cdot 5^n - 15}, \quad b_n = \frac{2 \cdot 3^n - 5}{8 \cdot 3^n - 11}, \quad c_n = \frac{9 + 3 \cdot 2^n}{12 - 2n^2}, \quad d_n = \frac{5 + 2 \cdot 3^{n+1}}{6 \cdot 3^{n-2} + 14}. \]

A17

\[a_n = \frac{4 + 0.4^n}{0.4^n + 2}, \quad b_n = \frac{7 - 0.3^n}{0.5^n + 21}, \quad c_n = \frac{9 - 4 \cdot 0.1^n}{3 + 0.2^{n-3}}. \]
A18

\[a_n = \frac{10^n - 3 \cdot 4^n}{4^n + 5 \cdot 10^n}, \quad b_n = \frac{5 \cdot 7^n + 12 \cdot 2^{n-2}}{7^n + 3 \cdot 2^{n+3}}, \quad c_n = \frac{3 \cdot 2^{n+3} - 4^{n+1}}{6 \cdot 4^n + 2^{2n+1}}. \]

A19

a) \(a_n = \cos(\pi(n+1)), \quad b_n = \sin(\pi n), \quad c_n = \cos(n), \quad d_n = n \cos(n) \)
b) \(a_n = \frac{\sin(n)}{n^2}, \quad b_n = \frac{1}{n+1} \sin\left(\frac{\pi n}{2}\right), \quad c_n = \frac{\cos(\pi n)}{n^2}, \quad d_n = \frac{\cos(\pi n^2)}{n^2} \)

A20

\[a_n = \frac{1}{n} \sin\left(\frac{3n - 2}{n + \pi}\right), \quad b_n = \frac{\sin(n)}{\sqrt{n}}, \quad c_n = \cos\left(\frac{1}{n} + \frac{\pi}{3}\right), \quad d_n = \sin\left(\frac{\pi}{6} - \frac{1}{n^2}\right). \]

A21

\[a_n = \frac{5 + \cos(\pi n)}{3 - \cos(\pi n)}, \quad b_n = \frac{2 + \sin(\pi n)}{4 - \sin(\pi n)}, \quad c_n = \frac{2 + \sin\left(\frac{\pi n}{2}\right)}{4 - \sin\left(\frac{\pi n}{2}\right)}. \]

Bestimmen Sie folgende Grenzwerte:

A22

\[\lim_{n \to \infty} \frac{(2n+1)! + (2n+2)!}{(2n+3)!}, \quad \lim_{n \to \infty} \frac{(n+4)! - (n+2)!}{2n+3)!}, \quad \lim_{n \to \infty} \frac{(2n+1)! + (2n+2)!}{(2n+3)! - (2n+2)!} \]

A23

\[\lim_{n \to \infty} \left(1 - \frac{4}{n}\right)^n, \quad \lim_{n \to \infty} \left(1 - \frac{1}{3n}\right)^n, \quad \lim_{n \to \infty} \left(1 + \frac{1}{n+3}\right)^n, \quad \lim_{n \to \infty} \left(1 - \frac{1}{n+5}\right)^n. \]

A24

a) \(\lim_{n \to \infty} \left(\frac{n+1}{n-1}\right)^n \), \quad a) \(\lim_{n \to \infty} \left(\frac{2n+3}{2n+1}\right)^{n+1} \)

b) \(\lim_{n \to \infty} \left(\frac{n^2-1}{n^2}\right)^n \), \quad c) \(\lim_{n \to \infty} \left(\frac{2n^2+2}{2n^2+1}\right)^{n^2} \).
2.3. Lösungen

L1

\[
\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n = 0.
\]

L2

\[
\begin{align*}
\lim_{n \to \infty} a_n &= -\frac{1}{4}, & \lim_{n \to \infty} b_n &= \frac{1}{2}, & \lim_{n \to \infty} c_n &= -\frac{3}{13}, & \lim_{n \to \infty} d_n &= \frac{1}{11},
\end{align*}
\]

L3

\[
\begin{align*}
\lim_{n \to \infty} \frac{6n^3 - 12n + 11}{8n^3 - 5n^2 + 14} &= \frac{3}{4}, &
\frac{3}{n} &= 0, &
\frac{3}{n} &= 0.
\end{align*}
\]

L4

\[
\begin{align*}
\lim_{n \to \infty} a_n &= 4, & \lim_{n \to \infty} b_n &= -125, & \lim_{n \to \infty} c_n &= \frac{1}{36}, & \lim_{n \to \infty} d_n &= 0.
\end{align*}
\]

L5

\[
\begin{align*}
\lim_{n \to \infty} \frac{n - 3}{2n + 7} \left(4 - \frac{4 - n}{4 + 5n} \right) &= \frac{1}{2 \cdot (-5)} = -0.1, &
\lim_{n \to \infty} \frac{2 - 2n}{4n + 4} \left(3 - \frac{3n}{5n + 5} \right) &= \frac{(-2)(-3)}{4 \cdot 5} = 0.3,
\end{align*}
\]

\[
\begin{align*}
\lim_{n \to \infty} \frac{(7 - 2n)(4n^2 - 9)}{(2n - 3)(2 - 7n^2)} &= \frac{(-2) \cdot 4}{2 \cdot (-7)} = \frac{4}{7},
\end{align*}
\]

L6

\[
\begin{align*}
\lim_{n \to \infty} a_n &= \lim_{n \to \infty} \frac{(n - 3)^2 - (n + 3)^2}{3n^2 + 3n - 1} = \frac{-12n}{3n^2 + 3n - 1} = 0,
\end{align*}
\]

\[
\begin{align*}
\lim_{n \to \infty} \frac{(n - 2)^3 - (2 - 3n)^3}{14n^3 - 7n} &= 2, &
\lim_{n \to \infty} \frac{8n^3 - (3 - 2n)^3}{(1 + n)^3 + 5n^2} &= 16.
\end{align*}
\]

L7

\[
\begin{align*}
\lim_{n \to \infty} a_n &= \lim_{n \to \infty} \frac{(3 - 4n)^2}{(n - 2)^3 - (n + 2)^3} = -\frac{4}{3}, &
\lim_{n \to \infty} b_n &= \lim_{n \to \infty} \frac{(3 - 4n)^2}{(n - 2)^3 - (1 + 2n)^3} = 0,
\end{align*}
\]

\[
\begin{align*}
\lim_{n \to \infty} c_n &= \lim_{n \to \infty} \frac{(3 - 4n)^3}{(n - 2)^3 - (n + 2)^3} = \infty, &
\lim_{n \to \infty} d_n &= \lim_{n \to \infty} \frac{(1 - 2n)^3}{(1 - n)^2 - (n + 1)^3} = -8.
\end{align*}
\]

L8 Die drei Folgen sind divergent. Die Folge \(a_n = (-1)^n\) hat zwei Häufungspunkte -1 und 1. Die Teilfolgen der Folge \(b_n = (-1)^n \cdot n\), \(b_{2k} = 2k\) und \(b_{2k+1} = -(2k + 1)\), sind unbeschränkt. Eine Teilfolge der Folge \(c_n = n^{(-1)^n}\), \(c_{2k} = (2k)\), ist unbeschränkt, die andere Teilfolge \(c_{2k+1} = (2k + 1)^{-1}\) ist eine Nullfolge.
L.9 Konvergieren alle Teilfolgen einer Folge gegen einen bestimmten Wert, so konvergiert auch die Folge gegen diesen Wert.

a) \[a_n = \frac{1 + (-1)^n}{n}, \quad a_{2k} = \frac{1 + (-1)^{2k}}{2k}, \quad a_{2k+1} = \frac{1 + (-1)^{2k+1}}{2k+1}, \]

\[\lim_{k \to \infty} a_{2k} = \lim_{k \to \infty} \frac{2}{2k} = \lim_{k \to \infty} \frac{1}{k} = 0, \quad \lim_{k \to \infty} a_{2k+1} = \lim_{k \to \infty} \frac{1 + (-1)^{2k+1}}{2k+1} = \lim_{k \to \infty} \frac{0}{2k+1} = 0, \]

\[\lim_{n \to \infty} a_n = 0, \]

\[b_n = \frac{(-1)^{n+1}}{n^2}, \quad b_{2k} = -\frac{1}{(2k)^2} = -\frac{1}{4k^2}, \quad b_{2k+1} = \frac{1}{(2k+1)^2}, \]

\[\lim_{k \to \infty} b_{2k} = \lim_{n \to \infty} b_{2k+1} = 0, \quad \lim_{n \to \infty} b_n = 0, \]

\[c_n = \frac{7 + (-1)^n \cdot 4}{n}, \quad c_{2k} = \frac{11}{2k}, \quad c_{2k+1} = \frac{3}{2k+1}, \quad \lim_{n \to \infty} c_n = 0, \]

\[\lim_{n \to \infty} d_n = \lim_{n \to \infty} \frac{25n + (-1)^{n-1} \cdot 100}{n^2 + 25n} = \lim_{n \to \infty} \frac{25 + (-1)^{n-1} \frac{100}{n}}{n + 25} = 0, \]

b) \[\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{6n + (-1)^n \cdot 2}{12n} = \lim_{n \to \infty} \frac{6 + (-1)^n \cdot \frac{2}{n}}{12} = \frac{1}{2}, \]

\[\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{6 + (-1)^n \cdot 2n}{12n} = \lim_{n \to \infty} \frac{\frac{6}{n} + (-1)^n \cdot \frac{2}{n}}{12} = \lim_{n \to \infty} \left(\frac{1}{2n} + (-1)^n \cdot \frac{1}{6n} \right). \]

Die Folge \(b_n \) hat zwei Häufungspunkte \(-1/6\) und \(1/6\), ist also divergent.

\[\lim_{n \to \infty} c_n = \lim_{n \to \infty} \frac{6n^3 + (-1)^n \cdot 2n}{12n^2} = \lim_{n \to \infty} \left(\frac{n}{2} + (-1)^n \cdot \frac{1}{6n} \right) = \infty, \]

L.10 Wir schätzen diese Folge ab und benutzen dabei die Formel Gl. (2.10) auf Seite 3:

\[1 < a_n = \sqrt[n]{3 + \frac{n-1}{n+1}} \leq \sqrt[4]{4}, \quad \lim_{n \to \infty} \sqrt[4]{4} = 1, \]

Die Folge \(a_n \) ist also zwischen den Folgen \(b_n = 1 \) und \(c_n = \sqrt[3]{4} \) eingeschlossen (siehe Gl. (2.6)), die den gleichen Grenzwert 1 haben.

\[\lim \frac{1}{n} \leq \lim a_n \leq \lim \sqrt[4]{4}, \quad \lim a_n = 1. \]

L.11

\[\lim_{n \to \infty} \left(\sqrt[4]{4n^2 + n - 2n} \right) = \frac{1}{4}, \quad \lim_{n \to \infty} \left(\sqrt[8]{9n^2 - n - 3n} \right) = -\frac{1}{6}, \quad \lim_{n \to \infty} \left(\sqrt[n^3 - n^2 - n^3] \right) = -\frac{1}{2}. \]
L12

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\sqrt{3n + 3} - \sqrt{2n - 2} \right) = \lim_{n \to \infty} \frac{\sqrt{3n + 3} - \sqrt{2n - 2}}{\sqrt{3n + 3} + \sqrt{2n - 2}} = \lim_{n \to \infty} \frac{n + 5}{\sqrt{3n + 3} + \sqrt{2n - 2}} = \lim_{n \to \infty} \frac{n(1 + \frac{5}{n})}{\sqrt{n} \left(\sqrt{3 + \frac{5}{n}} + \sqrt{2 - \frac{2}{n}} \right)} = \lim_{n \to \infty} \frac{\sqrt{n}(1 + \frac{5}{n})}{\sqrt{3 + \frac{5}{n}} + \sqrt{2 - \frac{2}{n}}} = \infty,$$

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \left(\sqrt{3n + 3} - \sqrt{3n - 2} \right) = \lim_{n \to \infty} \frac{5}{\sqrt{n} \left(\sqrt{3 + \frac{5}{n}} + \sqrt{3 - \frac{2}{n}} \right)} = 0,$$

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} \left(\sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1} \right) = \lim_{n \to \infty} \frac{(n^2 + n + 1) - (n^2 - n + 1)}{\sqrt{n^2 + n + 1} + \sqrt{n^2 - n + 1}} = \lim_{n \to \infty} \frac{2n}{\sqrt{n^2 + n + 1} + \sqrt{n^2 - n + 1}} = 2 \cdot \sqrt{1 + \sqrt{1}} = 1.$$

L13

$$\lim_{n \to \infty} \left(\sqrt{n^2 + 1} - \sqrt{n^2 - 1} \right) = 0, \quad \lim_{n \to \infty} \left(\sqrt{n(n + 2)} - \sqrt{n^2 - 3n + 5} \right) = \frac{5}{2},$$

$$\lim_{n \to \infty} \left(\sqrt{(n + 1)(n + 2)} - \sqrt{(n - 1)(n + 4)} \right) = 0, \quad \lim_{n \to \infty} \left(\sqrt{n} \left(\sqrt{n + 1} - \sqrt{n - 4} \right) \right) = \frac{5}{2}.$$

L14

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0, \quad \lim_{n \to \infty} \frac{1}{\sqrt{3n - 1}} = 0, \quad \lim_{n \to \infty} \frac{5n}{\sqrt{5n^2 - n}} = \frac{5}{\sqrt{5}} = \sqrt{5},$$

$$\lim_{n \to \infty} \frac{3n}{\sqrt{12n^2 + 2n}} = \lim_{n \to \infty} \frac{3n}{n\sqrt{12 + \frac{2}{n}}} = \lim_{n \to \infty} \frac{3}{\sqrt{12 + \frac{2}{n}}} = \lim_{n \to \infty} \frac{3}{\sqrt{12}} = \lim_{n \to \infty} \frac{3}{2 \sqrt{3}} = \frac{\sqrt{3}}{2}.$$

L15

$$\lim_{n \to \infty} \frac{1}{3^n} = 0, \quad \lim_{n \to \infty} \frac{1}{5^n - 1} = 0, \quad \lim_{n \to \infty} \left(\frac{1}{4^n} \cdot \frac{3n - 2}{n} \right) = 0, \quad \lim_{n \to \infty} \left(\left(\frac{-1}{2} \right)^n \cdot \frac{7n + 1}{n} \right) = 0.$$

L16

$$\lim_{n \to \infty} a_n = 4, \quad \lim_{n \to \infty} b_n = \frac{1}{4}, \quad \lim_{n \to \infty} c_n = -\frac{3}{4}, \quad \lim_{n \to \infty} d_n = 9.$$

L17

$$\lim_{n \to \infty} \frac{4 + 0.4^n}{0.4^n + 2} = 2, \quad \lim_{n \to \infty} \frac{7 - 0.3^n}{0.5^n + 21} = \frac{7}{3}, \quad \frac{c_n}{\lim_{n \to \infty} \frac{9 - 4 \cdot 0.1^n}{3 + 0.2^{n-3}}} = 3.$$
L18
\[
\lim_{n \to \infty} a_n = \frac{-1}{5}, \quad \lim_{n \to \infty} b_n = 245, \quad \lim_{n \to \infty} c_n = \frac{-1}{2}.
\]

L19 a) Die Folgen \(a_n\), \(c_n\) und \(d_n\) sind divergent. Die Folge \(b_n\) ist eine konstante Folge, für jedes \(n \in \mathbb{N}\) ist \(\sin(\pi n) = 0\).

\[
\lim_{n \to \infty} b_n = \lim_{n \to \infty} \sin(\pi n) = 0.
\]

b) Die Folge \(a_n\) ist das Produkt einer beschränkten Folge \(\sin n (-1 \leq \sin n \leq 1)\) und einer Nullfolge \(1/n^2\). Der Grenzwert einer solchen Folge ist null. Die Folgen \(b_n\), \(c_n\) und \(d_n\) stellen auch Produkte einer beschränkten Folge und einer Nullfolge dar und sind Nullfolgen.

\[
\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n = \lim_{n \to \infty} d_n = 0.
\]

L20
\[
\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0, \quad \lim_{n \to \infty} c_n = \lim_{n \to \infty} d_n = \frac{1}{2}.
\]

L21 Die Folgen \(a_n\) und \(c_n\) sind divergent.

\[
\lim_{n \to \infty} b_n = \frac{1}{2}.
\]

L22
\[
\lim_{n \to \infty} \frac{(2n + 1)! + (2n + 2)!}{(2n + 3)!} = \lim_{n \to \infty} \frac{(2n + 1)!((1 + 2n + 2)}{(2n + 2)(2n + 3)} = \lim_{n \to \infty} \frac{2n + 3}{(2n + 2)(2n + 3)} = \lim_{n \to \infty} \frac{1}{2n + 2} = 0,
\]
\[
\lim_{n \to \infty} \frac{(n + 4)! - (n + 2)!}{2n + 3)!} = \lim_{n \to \infty} \frac{(n + 2)!((n + 4)(n + 3) - 1)}{(n + 2)(n + 3)} = \infty,
\]
\[
\lim_{n \to \infty} \frac{(2n + 1)! + (2n + 2)!}{(2n + 3)! - (2n + 2)!} = 0.
\]

L23
\[
\lim_{n \to \infty} \left(1 - \frac{4}{n}\right)^n = e^{-4} = \frac{1}{e^4}, \quad \lim_{n \to \infty} \left(1 - \frac{1}{3n}\right)^n = e^{-1/3} = \frac{1}{\sqrt[3]{e}}, \quad \lim_{n \to \infty} \left(1 + \frac{1}{n + 3}\right)^n = e,
\]
\[
\lim_{n \to \infty} \left(1 - \frac{1}{n + 5}\right)^n = \frac{1}{e}.
\]
\[\text{L.24} \]

a) \[\lim_{n \to \infty} \left(\frac{n+1}{n-1} \right)^n = \lim_{n \to \infty} \left(1 - 1 + \frac{n+1}{n-1} \right)^n = \lim_{n \to \infty} \left(1 + \frac{n+1 - (n-1)}{n-1} \right)^n = \lim_{n \to \infty} \left(1 + \frac{2}{n-1} \right)^n = \]
\[= \lim_{n \to \infty} \left(1 + \frac{1}{\frac{n-1}{2}} \right)^{\frac{n-1}{2} \cdot \frac{2}{n-1} \cdot (n+1)} = \left(1 + \frac{1}{\frac{n-1}{2}} \right)^{\frac{n-1}{2} \cdot \frac{2}{n-1} \cdot (n+1)} = e^{\lim_{n \to \infty} \frac{2n}{n+1} = e^2} \]

b) \[\lim_{n \to \infty} \left(\frac{2n+3}{2n+1} \right)^{n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{\frac{2n+1}{2}} \right)^{\frac{2n+1}{2} \cdot \frac{1}{2n+1} \cdot (n+1)} = e^{\lim_{n \to \infty} \frac{n^4}{n^2} = e^{-\infty} = 0} \]

c) \[\lim_{n \to \infty} \left(\frac{n^2 - 1}{n^2} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{\frac{n^2 - 1}{n^2}} \right)^{(n^2 - 1) \cdot \frac{1}{n^2 - 1} \cdot (-n^4)} = e^{\lim_{n \to \infty} \frac{n^4}{n^2} = e^{-\infty} = 0} \]

d) \[\lim_{n \to \infty} \left(\frac{2n^2 + 2}{2n^2 + 1} \right)^{n^2} = \lim_{n \to \infty} \left(1 + \frac{1}{\frac{2n^2 + 1}{n^2}} \right)^{\frac{2n^2 + 1}{2n^2 + 1} \cdot n^2} = e^{\lim_{n \to \infty} \frac{n^2}{2n^2 + 1} = \sqrt{e}}. \]
3. Tests

3.1. Test 1

A1

\[a) \lim_{n \to \infty} \left(\frac{n^2}{n + 3} + \frac{n^2}{7 - n} \right), \quad b) \lim_{n \to \infty} \left(\frac{(2 - n)(1 - 6n)}{2n + 1} - 3n \right), \]

\[c) \lim_{n \to \infty} \left(\sqrt{n^2 + 9n - n} \right), \quad d) \lim_{n \to \infty} \left(\sqrt{n^2 + 2n} - \sqrt{n^2 + 7n} \right), \]

\[e) \lim_{n \to \infty} \left(\sqrt{n^4 + 3n^2 - n^2} \right), \quad f) \lim_{n \to \infty} \left(\frac{3n}{\sqrt{12n^2 - n}} \right). \]

A2

\[a) \lim_{n \to \infty} \left(\left(\frac{1}{2} \right)^n \cdot \frac{n}{n + 4} \right), \quad b) \lim_{n \to \infty} \left(\frac{n - 12}{3^n (3n + 5)} \right), \quad c) \lim_{n \to \infty} \left(1 - \frac{5}{n} \right)^n. \]
3.1.1. Test 1, Lösungen

L₁

a) \(\lim_{n \to \infty} \left(\frac{n^2}{n+3} + \frac{n^2}{7-n} \right) = -10 \),
b) \(\lim_{n \to \infty} \left(\frac{(2-n)(1-6n)}{2n+1} - 3n \right) = -8 \),

c) \(\lim_{n \to \infty} \left(\sqrt{n^2 + 9n - n} \right) = \frac{9}{2} \),
d) \(\lim_{n \to \infty} \left(\sqrt{n^2 + 2n} - \sqrt{n^2 + 7n} \right) = -\frac{5}{2} \),

e) \(\lim_{n \to \infty} \left(\sqrt{n^4 + 3n^2 - n^2} \right) = \frac{3}{2} \),
f) \(\lim_{n \to \infty} \left(\frac{3n}{\sqrt{12n^2 - n}} \right) = \frac{\sqrt{3}}{2} \).

L₂

a) \(\lim_{n \to \infty} \left(\left(\frac{1}{2} \right)^n \cdot \frac{n}{n+4} \right) = 0 \),
b) \(\lim_{n \to \infty} \left(\frac{n-12}{3^n (3n+5)} \right) = 0 \),
c) \(\lim_{n \to \infty} \left(1 - \frac{5}{n} \right)^n = \frac{1}{e^5} \).
Kapitel 3

Reihen

1. Reihen, Konvergenz von Reihen

Definition: Reihe

Ist \(a_n \) eine beliebige Folge von Zahlen, so wird der formale Ausdruck

\[
\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \ldots
\]

als eine Reihe bezeichnet, die einzelnen \(a_n \) sind die Glieder dieser Reihe.

Definition: alternierende Reihe

Eine alternierende Reihe ist eine Reihe, bei der die Reihenglieder abwechselnd positiv und negativ sind, wie zum Beispiel:

\[
\sum_{n=1}^{\infty} (-1)^n a_n \quad \text{oder} \quad \sum_{n=1}^{\infty} (-1)^{n+1} a_n
\]

wobei die \(a_n \) positive reelle Zahlen sind.

Es ist aber unmöglich, unendlich viele Glieder zu addieren. Stattdessen betrachtet man die Folge \(S_n \) der endlichen Partialsummen

\[
S_n = \sum_{k=1}^{n} a_k
\]

und untersucht das Verhalten dieser Folge. Existiert der Grenzwert \(\lim_{n \to \infty} S_n = s \), so heißt die Reihe konvergent mit \(s \) als Wert ihrer Summe. Besitzt \(S_n \) keinen Grenzwert, so heißt die Reihe divergent.

Definition: absolut konvergente Reihe

Eine reelle oder komplexe Reihe \(\sum_{n=1}^{\infty} a_n \) heißt absolut konvergent, wenn die Reihe \(\sum_{n=1}^{\infty} |a_n| \) der Beträge konvergiert.
1.1. Rechenregeln für Reihen

\[\sum a_n = a \text{ und } \sum b_n = b \] sind konvergente Reihen. Dann gelten folgende Regeln:

1. Summenregel
\[\sum (a_n + b_n) = \sum a_n + \sum b_n = a + b, \quad (3.4) \]

2. Differenzregel
\[\sum (a_n - b_n) = \sum a_n - \sum b_n = a - b, \quad (3.5) \]

3. Faktorregel
\[\sum c \cdot a_n = c \sum a_n = ca. \quad (3.6) \]

2. Geometrische Reihe

Geometrische Reihe ist eine Reihe der Form:
\[\sum_{n=0}^{\infty} a q^n = a + aq + aq^2 + aq^3 + \ldots, \quad a, q \in \mathbb{R}, \quad a \neq 0. \quad (3.7) \]

Die Zahl \(q \) kann positive und negative Werte annehmen, z.B.:

\[q = \frac{1}{3}, \quad a = 1: \quad \sum_{n=0}^{\infty} \left(\frac{1}{3} \right)^n = 1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \ldots, \]

\[q = -\frac{1}{2}, \quad a = 1: \quad \sum_{n=0}^{\infty} \left(-\frac{1}{2} \right)^n = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \ldots, \]

\[q = \frac{3}{2}, \quad a = 1: \quad \sum_{n=0}^{\infty} \left(\frac{3}{2} \right)^n = 1 + \frac{3}{2} + \frac{9}{4} + \frac{27}{8} + \frac{81}{16} + \ldots, \]

Im Folgenden wird gezeigt, dass die geometrische Reihe
\[\sum_{n=0}^{\infty} q^n = 1 + q + q^2 + q^3 + \ldots + q^{n-1} + \ldots \]

für \(|q| < 1\) konvergiert und für \(|q| > 1\) divergiert.

\[S_n = 1 + q + q^2 + q^3 + \ldots + q^{n-1}, \quad qS_n = q + q^2 + q^3 + \ldots + q^n, \]

\[S_n - qS_n = (1 + q + q^2 + q^3 + \ldots + q^{n-1}) - (q + q^2 + q^3 + \ldots + q^n) = 1 - q^n, \]

\[S_n - qS_n = S_n(1 - q) = 1 - q^n, \quad S_n = \frac{1 - q^n}{1 - q} \quad (q \neq 1) \]

\[|q| < 1: \quad \sum_{n=0}^{\infty} q^n = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1 - q^n}{1 - q} = \frac{1}{1 - q}, \quad \lim_{n \to \infty} q^n = 0, \]

Für \(|q| < 1\) konvergiert die Reihe (3.7) gegen \(a/(1 - q) \):
\[\sum_{n=0}^{\infty} a q^n = \frac{a}{1 - q} \quad (3.8) \]

und für \(|q| > 1\) divergiert. Für \(q = 1 \) ist die \(n \)-te Partialsumme der geometrischen Reihe
\[S_n = a + a \cdot 1 + a \cdot 1^2 + a \cdot 1^3 + \ldots + a \cdot 1^n = na. \]
2.1. **Aufgaben**

A1 Bestimmen Sie das Bildungsgesetz der folgenden Reihen und berechnen Sie den Reihenwert, falls die Reihe konvergiert.

\[
\begin{align*}
a) & \quad 3 + \frac{3}{2} + \frac{3}{4} + \frac{3}{8} + \frac{3}{16} + \ldots \\
b) & \quad 7 + \frac{7}{10} + \frac{7}{100} + \frac{7}{1000} + \frac{7}{10000} + \ldots \\
c) & \quad 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \ldots \\
d) & \quad 1 - 3 + 9 - 27 + 81 - \ldots
\end{align*}
\]

A2 Schreiben Sie die ersten vier Glieder der Reihe auf und berechnen Sie den Reihenwert:

\[
\begin{align*}
a) & \quad \sum_{n=0}^{\infty} \frac{1}{4^n}, \quad b) \quad \sum_{n=0}^{\infty} \frac{(-1)^n}{3^n}, \quad c) \quad \sum_{n=0}^{\infty} \frac{7}{5^n}, \quad d) \quad \sum_{n=0}^{\infty} \left(\frac{3}{2^n} - \frac{2}{3^n} \right), \quad e) \quad \sum_{n=0}^{\infty} \left(\frac{5}{4^n} + \frac{(-1)^n}{5^n} \right).
\end{align*}
\]

Bestimmen Sie ob die Reihe konvergiert oder divergiert. Falls die Reihe konvergiert, bestimmen Sie den Reihenwert.

A3

\[
\begin{align*}
a) & \quad \sum_{n=0}^{\infty} \left(\frac{1}{\sqrt{3}} \right)^n, \quad b) \quad \sum_{n=0}^{\infty} (-\sqrt{5})^n, \quad c) \quad \sum_{n=0}^{\infty} (-1)^n \cdot 3, \quad d) \quad \sum_{n=0}^{\infty} (-1)^n n, \quad e) \quad \sum_{n=0}^{\infty} (-1)^n \frac{12}{5^n}.
\end{align*}
\]

A4

\[
\begin{align*}
a) & \quad \sum_{n=0}^{\infty} \frac{2^{n+2}}{3^n}, \quad b) \quad \sum_{n=0}^{\infty} \frac{3^n}{5^{n+1}}, \quad c) \quad \sum_{n=0}^{\infty} \frac{2^{n+1}}{3^{n+2}}, \quad d) \quad \sum_{n=0}^{\infty} \frac{(-5)^n}{3^{n+3}}, \quad e) \quad \sum_{n=0}^{\infty} (-1)^n \frac{7^{n+1}}{12 \cdot 3^n}.
\end{align*}
\]

A5

\[
\begin{align*}
a) & \quad \sum_{n=0}^{\infty} \left(\frac{7}{3^n} - \frac{3}{7^n} \right), \quad b) \quad \sum_{n=0}^{\infty} \left(\frac{2}{3^n} + \frac{3}{2^n} \right), \quad c) \quad \sum_{n=0}^{\infty} \left(\frac{2^n}{3^n} + \frac{3^n}{2^n} \right), \quad d) \quad \sum_{n=0}^{\infty} \left(\frac{1}{2^n} - \frac{(-5)^n}{4^{n+1}} \right).
\end{align*}
\]

3. **Harmonische Reihe**

Im Folgenden wird gezeigt, dass die *harmonische Reihe* \(\sum_{n=1}^{\infty} \frac{1}{n} \) divergiert. Einige Glieder der harmonischen Reihe werden durch kleinere Glieder ersetzt wie folgt:

\[
S_n = \sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \left(\frac{1}{3} \right) + \left(\frac{1}{4} \right) + \left(\frac{1}{5} \right) + \left(\frac{1}{6} \right) + \left(\frac{1}{7} \right) + \left(\frac{1}{8} \right) + \left(\frac{1}{9} \right) + \ldots + \left(\frac{1}{16} \right) + \ldots + \left(\frac{1}{2^{n-1}} \right) + \ldots + \left(\frac{1}{2^n} \right) + \ldots
\]

\[
> 1 + \frac{1}{2} + \ldots + \frac{1}{2^n} + \frac{1}{2} = 1 + \frac{n+1}{2}. \quad (3.9)
\]

18
4. Reihen, Beispiele

1. Die harmonische Reihe \(\sum_{n=1}^{\infty} \frac{1}{n} \)

\[\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \ldots = \infty. \] (3.10)

divergiert gegen unendlich, wie zuerst Nikolaus von Oresme bewies.

Leonhard Euler hat gezeigt, dass die Reihe \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) gegen die Zahl \(\frac{\pi^2}{6} \) konvergiert.

\[\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \ldots = \frac{\pi^2}{6}. \] (3.11)

Die allgemeine harmonische Reihe

\[\sum_{n=1}^{\infty} \frac{1}{n^a} \quad (a > 0) \] (3.12)

konvergiert für \(a > 1 \) und divergiert für \(a \leq 1 \).

2. Die alternierende harmonische Reihe konvergiert gegen die Zahl \(\ln(2) \).

\[\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \ldots = \ln(2). \] (3.13)

3. Die Leibniz-Reihe konvergiert gegen die Zahl \(\frac{\pi}{4} \).

\[\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \ldots = \frac{\pi}{4}. \] (3.14)

4. Die Reihe \(\sum_{n=0}^{\infty} \frac{1}{n!} \) konvergiert gegen die Eulersche Zahl \(e \).

\[\sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1} + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \ldots = e. \] (3.15)

5. Die geometrische Reihe \(\sum_{n=0}^{\infty} q^n \) ist genau dann konvergent, wenn \(|q| < 1 \):

\[\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}. \] (3.16)
5. Konvergenzkriterien

5.1. Notwendiges Kriterium für Konvergenz

Ein notwendiges Kriterium für die Konvergenz einer unendlichen Reihe \(\sum_{n=1}^{\infty} a_n \) ist die Bedingung, dass die Summanden eine Nullfolge bilden

\[
\lim_{n \to \infty} a_n = 0. \tag{3.17}
\]

Diese Bedingung ist zwar notwendig, aber nicht hinreichend. Ist diese Bedingung nicht erfüllt, kann man mit Sicherheit sagen, dass die Reihe nicht konvergiert. Ist diese Bedingung erfüllt, kann man nicht mit Sicherheit sagen, dass die Reihe konvergiert. Es gibt Reihen, für die das notwendige Kriterium erfüllt ist, die aber trotzdem divergieren.

Beispiele:

B1

\[
\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} n, \quad \lim_{n \to \infty} a_n = \lim_{n \to \infty} n = \infty
\]

Die Reihe divergiert, da das notwendige Konvergenzkriterium nicht erfüllt ist.

B2

\[
\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{n}{n+1}, \quad \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1+1/n} = 1 \neq 0.
\]

Die Reihe divergiert.

B3

\[
\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^n 2^n, \quad \lim_{n \to \infty} a_n = \lim_{n \to \infty} (-1)^n 2^n \text{ nicht existiert.}
\]

Die Reihe divergiert, da der Grenzwert nicht existiert.

B4

\[
\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{n+4}{n^2 - n + 9}, \quad \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n+4}{n^2 - n + 9} = \lim_{n \to \infty} \frac{n \left(1 + \frac{4}{n}\right)}{n^2 \left(1 - \frac{1}{n} + \frac{9}{n^2}\right)} = 0.
\]

Obiges notwendige Konvergenzkriterium ist bei dieser Reihe erfüllt. Demnach konvergiert sie möglicherweise. Um aber zu untersuchen, ob sie wirklich konvergiert, müssen wir hinreichende Konvergenzkriterien zur Verfügung haben.

B5

\[
\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{2n+3}{9n-5}, \quad \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2n+3}{9n-5} = \lim_{n \to \infty} \frac{n \left(2 + \frac{3}{n}\right)}{n \left(9 - \frac{5}{n}\right)} = \lim_{n \to \infty} \frac{2 + \frac{3}{n}}{9 - \frac{5}{n}} = \frac{2}{9}.
\]

Die Reihe divergiert, da das notwendige Konvergenzkriterium nicht erfüllt ist.
Die Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ ist die _harmonische Reihe_. Das notwendige Konvergenzkriterium ist für die harmonische Reihe erfüllt. Es ist aber bekannt, dass die harmonische Reihe divergiert.

5.2. Hauptkriterium

Definition: Hauskriterium

Eine Reihe $\sum_{n=1}^{\infty} a_n$ mit positiven Gliedern ist genau dann konvergent, wenn ihre Partialsummen S_n beschränkt sind. Das heißt, dass es ein M gibt mit $S_n \leq M$ für alle n.

Beispiel: Die Reihe $\sum_{n=1}^{\infty} \frac{1}{n^2}$ (3.11) (S. 19) besitzt beschränkte Partialsummen

$$S_n = 1 + \sum_{n=2}^{n} \frac{1}{n^2} \leq 1 + \sum_{n=2}^{n} \frac{1}{n(n-1)} = 1 + \sum_{n=2}^{n} \left(\frac{1}{n-1} - \frac{1}{n} \right) = 1 + \left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \ldots + \left(\frac{1}{n-1} - \frac{1}{n} \right) = 1 + 1 - \frac{1}{n} < 2$$

und ist deswegen konvergent. Euler hat als erster die Summe dieser Reihe gefunden. Sie wird auch als _teleskopierende Summe_ bezeichnet.

5.3. Quotientenkriterium

Man untersucht den Grenzwert $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ einer Reihe $\sum_{n=1}^{\infty} a_n$. Falls dieser Grenzwert existiert, kann man Folgendes sagen:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} < 1,$$ \text{die Reihe ist konvergent,}

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1,$$ \text{keine Aussage über Konvergenz,}

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} > 1,$$ \text{die Reihe ist divergent.}

Beispiele:

B1

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n}, \quad a_n = \frac{1}{n}, \quad a_{n+1} = \frac{1}{n+1}, \quad \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{n}{n+1} = 1.$$
B2
\[\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n^2}, \quad a_n = \frac{1}{n^2}, \quad a_{n+1} = \frac{1}{(n+1)^2}, \quad \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \left(\frac{n}{n+1}\right)^2 = 1.\]

B3
\[\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{3^n}{n!}, \quad a_n = \frac{3^n}{n!}, \quad a_{n+1} = \frac{3^{n+1}}{(n+1)!}, \quad \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3^{n+1}}{(n+1)!} \cdot \frac{n!}{3^n} = \lim_{n \to \infty} \frac{3^{n+1}}{3^n} \cdot \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{3}{n+1} = 0 < 1.\]

B4
\[\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{n}{7^n}, \quad a_n = \frac{n}{7^n}, \quad a_{n+1} = \frac{n+1}{7^{n+1}}, \quad \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n+1}{7^{n+1}} \cdot \frac{7^n}{n} = \lim_{n \to \infty} \frac{7^n}{7^n} \cdot \frac{n+1}{n} = \lim_{n \to \infty} \frac{1}{7} \left(1 + \frac{1}{n}\right) = \frac{1}{7} < 1.\]

Die Reihen konvergieren, da die Grenzwerte nach dem Quotientenkriterium kleiner als 1 sind. In den Rechnungen haben wir die Beträge weggelassen, da alle \(a_n\) positiv sind.

5.4. Wurzelkriterium
Falls der Grenzwert \(\lim_{n \to \infty} \sqrt[n]{|a_n|}\) existiert, lässt sich Folgendes sagen:

1. ist \(\lim_{n \to \infty} \sqrt[n]{|a_n|} < 1\), ist die Reihe absolut konvergent,

2. ist \(\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1\), lässt sich keine Aussage über Konvergenz treffen,

3. ist \(\lim_{n \to \infty} \sqrt[n]{|a_n|} > 1\), ist die Reihe divergent.

Beispiele:

B1
\[\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n^p}, \quad \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{n^p}} = \frac{1}{n} \leq \frac{1}{2} < 1.\]

Der Grenzwert \(\lim_{n \to \infty} \sqrt[n]{|a_n|}\) ist kleiner als 1, die Reihe konvergiert nach dem Wurzelkriterium.

B2
\[\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{(3n-2)^n}{(7n+9)^n}, \quad \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\frac{(3n-2)^n}{(7n+9)^n}} = \lim_{n \to \infty} \frac{3n-2}{7n+9} = \frac{3}{7} < 1.\]

Die Reihe ist konvergent.

22
Mit Hilfe der Formel (2.10) (S. 3) für \(\lim_{n\to\infty} \sqrt[n]{n} \) haben wir gezeigt, dass die Reihe konvergiert.

\[
\begin{align*}
\sum_{n=1}^{\infty} a_n &= \sum_{n=1}^{\infty} \frac{n^4}{3^n}, & \lim_{n\to\infty} \sqrt[n]{n^4} &= \lim_{n\to\infty} \frac{\sqrt[n]{n^4}}{3} = \frac{1}{3} \lim_{n\to\infty} (\sqrt[n]{n})^4 = \frac{1}{3} \left(\lim_{n\to\infty} \sqrt[n]{n} \right)^4 = \frac{1}{3} < 1.
\end{align*}
\]

Eine Entscheidung über Konvergenz ist nicht möglich, da der Grenzwert gleich 1 ist.

5.5. Leibniz-Kriterium

Sei \(\sum_{n=1}^{\infty} (-1)^n a_n \) eine alternierende Reihe und die Folge \(|a_n|\) der Beträge der Reihensummanden eine Nullfolge. Dann ist die Reihe konvergent.

Beispiele:

B1 Die Reihe \(\sum_{n=1}^{\infty} (-1)^n (2n+1)^{-1}, \) Eq. (3.14) auf Seite 19, ist eine konvergente Reihe:

\[
\begin{align*}
\sum_{n=1}^{\infty} (-1)^n \frac{1}{2n+1} &= -\frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \ldots, & \lim_{n\to\infty} |a_n| &= \lim_{n\to\infty} \frac{1}{2n+1} = 0.
\end{align*}
\]

B2 Die Reihe

\[
\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} = -1 + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} - \frac{1}{\sqrt{5}} + \ldots, & \lim_{n\to\infty} |a_n| &= \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0.
\]

ist konvergent, da sie die Voraussetzungen des Leibniz-Kriteriums erfüllt.

B3 Die Reihe

\[
\begin{align*}
\sum_{n=1}^{\infty} \frac{(n + 1)^{n+2}}{(-n)^n} &= \sum_{n=1}^{\infty} (-1)^n \frac{(n + 1)^{n+2}}{n^n} = \sum_{n=1}^{\infty} (-1)^n(n + 1)^2 \frac{(n + 1)^n}{n^n} = \sum_{n=1}^{\infty} (-1)^n(n + 1)^2 \left(\frac{n + 1}{n} \right)^n = \\
&= \sum_{n=1}^{\infty} (-1)^n(n + 1)^2 \left(1 + \frac{1}{n} \right)^n, & \lim_{n\to\infty} |a_n| &= \lim_{n\to\infty} (n + 1)^2 \left(1 + \frac{1}{n} \right)^n = \lim_{n\to\infty} (n + 1)^2 = \infty.
\end{align*}
\]

ist divergent.
5.6. Minorantenkriterium

Definition: Minorante

Eine Reihe \(\sum_{n=1}^{\infty} m_n \) ist eine Minorante für \(\sum_{n=1}^{\infty} a_n \), wenn eine natürliche Zahl \(n_0 \in \mathbb{N} \) existiert, so dass \(0 \leq m_n \leq a_n \) für alle \(n \in \mathbb{N} \) mit \(n \geq n_0 \).

Eine Minorante ist also eine Reihe, deren Summanden indexweise kleiner oder gleich wie die Summanden einer gegebenen Reihe sind. Entsprechend ist jede \(n \)-te Partialsumme der Minorante kleiner oder gleich der \(n \)-ten Partialsumme der ursprünglichen Reihe. Deshalb ergibt sich aus der Divergenz der Minorante auch die Divergenz der ursprünglichen Reihe. Darin liegt die Bedeutung des Minorantenkriteriums.

Minorantenkriterium

Jede Reihe, für die eine divergente Minorante existiert, ist divergiert.

Beispiele:

B1

\[\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 1}}, \quad a_n = \frac{1}{\sqrt{n^2 + 1}} \geq \frac{1}{\sqrt{2n^2}} = \frac{1}{\sqrt{2n}}. \]

Die Reihe \(\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 1}} \) ist divergent, da sie eine divergente Minorante, \(\sum_{n=1}^{\infty} \frac{1}{\sqrt{2n}} \), hat.

B2

\[\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{n^2 - 7n}{n^3 + 3n - 2}, \quad a_n = \frac{n^2 - 7n}{n^3 + 3n - 2} \geq \frac{n^2 - 7n}{n^3} = \frac{1}{n} - \frac{7}{n^2}. \]

Die Minorante, \(\sum_{n=1}^{\infty} \frac{1}{n} - \frac{7}{n^2} \), ist divergent, da die Reihe \(\sum_{n=1}^{\infty} \frac{1}{n} \) divergiert und damit auch die Reihe \(\sum_{n=1}^{\infty} \frac{n^2 - 7n}{n^3 + 3n - 2} \).

5.7. Majorantenkriterium

Definition: Majorante

Eine Reihe \(\sum_{n=1}^{\infty} M_n \) ist eine Majorante für \(\sum_{n=1}^{\infty} a_n \), wenn eine natürliche Zahl \(n_0 \in \mathbb{N} \) existiert, so dass \(0 \leq a_n \leq M_n \) für alle \(n \in \mathbb{N} \) mit \(n \geq n_0 \).

Eine Majorante ist also eine Reihe, deren Summanden indexweise größer oder gleich wie die Summanden einer gegebenen Reihe sind. Entsprechend ist jede \(n \)-te Partialsumme der Majorante größer oder gleich der \(n \)-ten Partialsumme der ursprünglichen Reihe. Deshalb ergibt sich aus der Konvergenz der Majorante auch die Konvergenz der ursprünglichen Reihe. Darin liegt die Bedeutung des Majorantenkriteriums.

Majorantenkriterium
Jede Reihe, für die eine konvergente Majorante existiert, ist konvergent.

Mit Minoranten- und Majorantenkriterien kann man recht kompliziert aussehende Reihen behandeln.

Beispiele:

B1 Die Reihe \(\sum_{n=1}^{\infty} \frac{\sin n}{n^2} \) ist konvergent, da für sie eine konvergente Majorante \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) existiert:

\[
\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{\sin n}{n^2}, \quad a_n = \frac{\sin n}{n^2} \leq \frac{1}{n^2}.
\]

B2

\[
\begin{align*}
\sum_{n=2}^{\infty} a_n &= \sum_{n=2}^{\infty} \frac{1}{n^2 - \sqrt{n}}, \\
a_n &= \sum_{n=2}^{\infty} \frac{1}{n^2 - \sqrt{n}} \leq \sum_{n=2}^{\infty} \frac{1}{n^2 - n} = \sum_{n=2}^{\infty} \frac{1}{n(n-1)} \leq \sum_{n=2}^{\infty} \frac{1}{(n-1)^2}, \\
\sum_{n=2}^{\infty} \frac{1}{(n-1)^2} &= \sum_{n=1}^{\infty} \frac{1}{n^2}.
\end{align*}
\]

Die Reihe \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) ist eine konvergente Majorante. Die Reihe \(\sum_{n=2}^{\infty} \frac{1}{n^2 - \sqrt{n}} \) konvergiert.

5.8. Konvergenzkriterien: Zusammenfassung, Notation

Abkürzungen:

- \(\text{NK} \) = Notwendiges Kriterium für Konvergenz
- \(\text{QK} \) = Quotientenkriterium
- \(\text{WK} \) = Wurzelkriterium
- \(\text{LK} \) = Leibniz-Kriterium
- \(\text{MK} \) = Majoranten-, Minorantenkriterium

6. Beispiele

In den folgenden Beispielen werden wir verschiedene Konvergenzkriterien anwenden, um die Konvergenz bzw. Divergenz einer Reihe zu prüfen.

B1

\[
\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n(n + 2)}.
\]
Wurzel- und Quotientenkriterium führen hier zu keiner Aussage über die Konvergenz. Nach dem Majorantenkriterium konvergiert die Reihe, da sie eine konvergierende Majorante hat: \(\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6 \) (siehe 3.11, S.19).

\[
\begin{align*}
\text{B2} & \quad \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n^2}. \\
\text{QK} : & \quad \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n^2}{(n+1)(n+1)} = \lim_{n \to \infty} \frac{n^2}{(n+1)} = \frac{1}{n+1} = 0 < 1, \\
\text{WK} : & \quad \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{1}{n} = 0 < 1, \\
\text{MK} : & \quad a_n = \frac{1}{n^2} \leq \left(\frac{1}{2}\right)^{n-1}, \quad \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} \text{ konvergiert.}
\end{align*}
\]

Wurzel-, Quotienten- und Majorantenkriterium zeigen, dass die Reihe konvergiert. Da der Term \(a_n \) die Form \((...)^{n}\) hat, führt das Quotientenkriterium schnell zum einfachen Ausdruck \(\lim_{n \to \infty} 1/n = 0 \).

\[
\begin{align*}
\text{B3} & \quad \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n}. \\
\text{QK} : & \quad \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n \cdot 2^n}{(n+1) \cdot 2^{n+1}} = \lim_{n \to \infty} \frac{n}{2(n+1)} = \frac{1}{2} \lim_{n \to \infty} \frac{1}{1+1/n} = \frac{1}{2} < 1, \\
\text{WK} : & \quad \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{n \cdot 2^n}} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{n \cdot 2^n}} = \lim_{n \to \infty} \frac{1}{\sqrt{2^n \sqrt{n}}} = \frac{1}{2} \lim_{n \to \infty} \frac{1}{\sqrt{n}} = \frac{1}{2} < 1, \\
\text{MK} : & \quad a_n = \frac{1}{n \cdot 2^n} \leq \frac{1}{2^n}, \quad \sum_{n=1}^{\infty} \frac{1}{2^n} \text{ konvergiert.}
\end{align*}
\]
B4

\[\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{n^2}{3^n}. \]

QK : \[\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)^2}{3^{n+1}} \cdot \frac{3^n}{n^2} = \frac{1}{3} \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^2 = \frac{1}{3}, \]

WK : \[\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\frac{n^2}{3^n}} = \frac{1}{3} \lim_{n \to \infty} \frac{\sqrt[n]{n}}{\sqrt[n]{3}} = \frac{1}{3} \lim_{n \to \infty} \left(\frac{\sqrt[n]{n}}{\sqrt[n]{3}} \right)^2 = \frac{1}{3}. \]

B5

\[\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{\sin(n\pi/2)}{n!}. \]

Wir schreiben zuerst die ersten Glieder der Folge \(a_n = \sin(n\pi/2) \) auf.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin(n\pi/2))</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Die ersten Glieder dieser Reihe sind also

\[\sum_{n=1}^{\infty} \frac{\sin(n\pi/2)}{n!} = \frac{1}{1!} - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \frac{1}{9!} + \ldots \]

Der Term \(\sin(n\pi/2) \) bewirkt 1) dass nur die Glieder mit ungeraden \(n \) ungleich Null sind und 2) dass die Reihe eine alterniert und in folgender Form dargestellt werden kann:

\[\sum_{n=1}^{\infty} \frac{\sin(n\pi/2)}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}. \]

Sie konvergiert also nach dem Leibitz-Kriterium.

7. Aufgaben

7.1. Konvergenz einer Reihe

Bestimmen Sie mit Hilfe des Wurzelkriteriums, ob die Reihen konvergieren oder divergieren:

A1

\[\sum_{n=1}^{\infty} \left(\frac{2}{3} - \frac{1}{2n} \right)^n, \quad \sum_{n=1}^{\infty} \left(\frac{n}{2n+1} \right)^n, \quad \sum_{n=1}^{\infty} \left(\frac{n}{3n+5} \right)^n, \quad \sum_{n=1}^{\infty} \left(\frac{2n-9}{5n+12} \right)^n. \]
A2
\[\sum_{n=1}^{\infty} \frac{n^6}{4^n}, \quad \sum_{n=1}^{\infty} \frac{n^5}{7^{n+1}}, \quad \sum_{n=1}^{\infty} \frac{3n^3}{6^{n+1}}, \quad \sum_{n=1}^{\infty} \frac{5n^7}{7^{n-2}}. \]

A3
\[\begin{align*}
a) & \sum_{n=1}^{\infty} 3^n \left(1 + \frac{1}{n}\right)^{3n}, \quad b) \sum_{n=1}^{\infty} 2^n \left(1 - \frac{1}{n}\right)^{n^2}, \quad c) \sum_{n=1}^{\infty} 4^n \left(1 - \frac{1}{n}\right)^{3n^2}, \quad d) \sum_{n=1}^{\infty} 5^n \left(1 + \frac{1}{n}\right)^{2n^2}.
\end{align*} \]

A4 Bestimmen Sie mit Hilfe des Quotientenkriteriums, ob die Reihen konvergieren oder divergieren:
\[\sum_{n=1}^{\infty} \frac{1}{(2n)!}, \quad \sum_{n=1}^{\infty} \frac{5n}{(2n)!}, \quad \sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}, \quad \sum_{n=1}^{\infty} \frac{3^n \cdot (n!)^2}{(2n)!}, \quad \sum_{n=1}^{\infty} \frac{4^n \cdot (n!)^2}{(2n)!}. \]

A5 Bestimmen Sie mit Hilfe des Leibniz-Kriteriums, ob die Reihen konvergieren oder divergieren:
\[\begin{align*}
a) & \sum_{n=1}^{\infty} \frac{(n + 2)^{n+1}}{(-n)^n}, \quad b) \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^{n+1}}{(n + 1)^n}, \quad c) \sum_{n=1}^{\infty} (-1)^n \frac{n(n - 4)^n}{n^n}, \\
d) & \sum_{n=1}^{\infty} \frac{(n - 5)^n - 2}{(-n)^n}, \quad e) \sum_{n=1}^{\infty} (-1)^n \frac{(n + 3)^n}{n^n}.
\end{align*} \]

A6 Bestimmen Sie mit Hilfe der Minoranten- und Majorantenkriterien, ob die Reihen konvergieren oder divergieren:
\[\begin{align*}
&\sum_{n=1}^{\infty} \frac{n}{n^2 + 2}, \quad \sum_{n=1}^{\infty} \frac{n^2}{n^3 + 1}, \quad \sum_{n=1}^{\infty} \frac{3}{5^{n-1} + 2n - 1}, \quad \sum_{n=1}^{\infty} \frac{n + 2}{(n + 1)^3}, \quad \sum_{n=1}^{\infty} \frac{n^2 - 5n}{n^3 + n + 1}, \\
&\sum_{n=1}^{\infty} \frac{1 + \sin (n)}{10^n}, \quad \sum_{n=1}^{\infty} \frac{\sin (n) + \cos (n)}{n^2}.
\end{align*} \]

A7 Bestimmen Sie, ob die Reihen konvergieren oder divergieren:
\[\begin{align*}
a) & \sum_{n=2}^{\infty} \frac{n - 3}{12n^2 - 3n + 5}, \quad b) \sum_{n=3}^{\infty} \frac{(n - 3)^2}{(n - 2)^2 (21n + 5)}, \quad c) \sum_{n=1}^{\infty} \frac{2n^2 - 3}{5n^2 (3 + n)^2}, \quad d) \sum_{n=1}^{\infty} \frac{11n + 8}{8n^3 - 2n + 21}.
\end{align*} \]

A8
\[\begin{align*}
&\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n + 5}}, \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 5}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{2n^2 + 8}}, \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 12n}}.
\end{align*} \]

A9
\[\begin{align*}
&\sum_{n=0}^{\infty} (-3)^n, \quad \sum_{n=1}^{\infty} \frac{n}{n + 1}, \quad \sum_{n=2}^{\infty} \frac{1}{(n - 1)^n}, \quad \sum_{n=1}^{\infty} \frac{n^3}{3n}, \quad \sum_{n=1}^{\infty} \frac{\cos^2(n)}{3^n}, \quad \sum_{n=1}^{\infty} \frac{1 + 3^n}{2^n}.
\end{align*} \]
\begin{align*}
\text{A10} \\
\sum_{n=1}^{\infty} \frac{1 - n^2}{n^2 + 5n}, \quad \sum_{n=1}^{\infty} \frac{n(n + 4)}{(2n + 3)^2}
\end{align*}

\begin{align*}
\text{A11} \\
a) \sum_{n=1}^{\infty} \frac{3n + 7}{9 + 5n}, \quad b) \sum_{n=1}^{\infty} \frac{4^n}{(n!)^2}, \quad c) \sum_{n=1}^{\infty} \frac{3}{\sqrt{n^2 + 8n}}, \quad d) \sum_{n=1}^{\infty} \frac{5^n}{(3 + 2n)^n}
\end{align*}
8. Lösungen

8.1. Geometrische Reihe

L1

L2

a) \[\sum_{n=0}^{\infty} \frac{1}{4^n} = \sum_{n=0}^{\infty} \left(\frac{1}{4} \right)^n = \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \frac{1}{256} + \ldots = \frac{1}{1 - 1/4} = \frac{4}{3}, \quad a = 1, \quad q = \frac{1}{4}, \]

b) \[\sum_{n=0}^{\infty} \frac{(-1)^n}{3^n} = \sum_{n=0}^{\infty} \left(\frac{-1}{3} \right)^n = -\frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \frac{1}{81} + \ldots = \frac{1}{1 - (-1/3)} = \frac{3}{4}, \quad a = 1, \quad q = -\frac{1}{3}, \]

c) \[\sum_{n=0}^{\infty} \frac{7^n}{5^n} = \sum_{n=0}^{\infty} 7 \cdot \left(\frac{1}{5} \right)^n = 7 + \frac{7}{5} + \frac{7}{25} + \frac{7}{125} + \ldots = \frac{7}{1 - 1/5} = \frac{35}{4}, \quad a = 7, \quad q = \frac{1}{5}, \]

d) \[\sum_{n=0}^{\infty} \left(\frac{3}{2^n} - \frac{2}{3^n} \right) = \sum_{n=0}^{\infty} 3 \cdot \left(\frac{1}{2} \right)^n - \sum_{n=0}^{\infty} 2 \cdot \left(\frac{1}{3} \right)^n = \frac{5}{6} + \frac{19}{36} + \frac{65}{216} + \frac{211}{1296} + \ldots = \frac{3}{1 - 1/2} - \frac{2}{1 - 1/3} = 6 \cdot 2 = 3, \]

e) \[\sum_{n=0}^{\infty} \left(\frac{5}{4^n} + (-1)^n \cdot \frac{4}{5^n} \right) = \sum_{n=0}^{\infty} \frac{5}{4^n} + \sum_{n=0}^{\infty} \frac{-1}{5^n} = \frac{9}{20} + \frac{189}{400} + \frac{369}{8000} + \frac{4149}{160000} + \ldots = \frac{5}{1 - 1/4} + \frac{4}{1 - (-1/5)} = \frac{20}{3} + \frac{20}{6} = 10. \]

L3

L4

L5

8.2. Konvergenzkriterien

L1 Diese Reihen konvergieren.

\[
\lim_{n \to \infty} \sqrt[n]{\left(\frac{2}{3} - \frac{1}{2n} \right)^n} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{2}{3} - \frac{1}{2n} \right)^n} = \lim_{n \to \infty} \frac{2}{3} - \frac{1}{2n} = \frac{2}{3} < 1, \\
\lim_{n \to \infty} \sqrt[n]{\left(\frac{n}{2n + 1} \right)^n} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{n}{2n + 1} \right)^n} = \lim_{n \to \infty} \frac{n}{2n + 1} = \frac{1}{2 + \frac{1}{n}} = \frac{1}{2} < 1, \\
\lim_{n \to \infty} \sqrt[n]{\left(\frac{n}{3n + 5} \right)^n} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{n}{3n + 5} \right)^n} = \lim_{n \to \infty} \frac{n}{3n + 5} = \frac{1}{3 + \frac{2}{n}} = \frac{1}{3} < 1, \\
\lim_{n \to \infty} \sqrt[n]{\left(\frac{2n - 9}{5n + 12} \right)^n} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{2n - 9}{5n + 12} \right)^n} = \lim_{n \to \infty} \frac{2n - 9}{5n + 12} = \frac{2}{5} < 1, \\
\]
L2 Diese Reihen konvergieren.

\[
\lim_{n \to \infty} \sqrt[n]{\frac{n^6}{4^n}} = \lim_{n \to \infty} \frac{\sqrt[n]{n^6}}{4} = \frac{1}{4} \left(\lim_{n \to \infty} \sqrt[n]{n} \right)^6 = \frac{1}{4} < 1,
\]

\[
\lim_{n \to \infty} \sqrt[n]{\frac{n^5}{7^{n+1}}} = \lim_{n \to \infty} \frac{\sqrt[n]{n^5}}{7} \cdot \lim_{n \to \infty} \sqrt[n]{7} = \frac{1}{7} \lim_{n \to \infty} \sqrt[n]{7^n} = \frac{1}{7} < 1,
\]

\[
\lim_{n \to \infty} \sqrt[n]{\frac{3n^3}{6^{n+1}}} = \frac{1}{6}, \quad \lim_{n \to \infty} \frac{5n^7}{7^{n-2}} = \frac{1}{7}.
\]

L3

a) \[\lim_{n \to \infty} \sqrt[n]{2^n \left(1 + \frac{1}{n}\right)^{3n}} = 3 \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^3 = 3 > 1,\]

b) \[\lim_{n \to \infty} \sqrt[n]{2^n \left(1 - \frac{1}{n}\right)^{3n} n!} = 2 \lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n = 2 e^{-1} = \frac{2}{e} < 1,\]

c) \[\lim_{n \to \infty} \sqrt[n]{4^n \left(1 - \frac{1}{n}\right)^{3n} n!} = 4 \lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n = 4 e^{-3} = \frac{4}{e^3} < 1.\]

d) \[\lim_{n \to \infty} \sqrt[n]{5^n \left(1 + \frac{1}{n}\right)^{2n} n!} = 5 \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{2n} = 5 e^2 > 1.\]

Die Reihen a) und d) konvergieren, die Reihen b) und c) divergieren.

L4

\[
\sum_{n=1}^{\infty} \frac{1}{(2n)!} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{(2n + 1)(2n + 2)} = 0 < 1 \quad \text{(konvergent)},
\]

\[
\sum_{n=1}^{\infty} \frac{5n}{(2n)!} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right) \frac{1}{(2n + 1)(2n + 2)} = 0 < 1 \quad \text{(konvergent)},
\]

\[
\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n + 1)^2}{(2n + 1)(2n + 2)} = \frac{1}{4} < 1, \quad \text{(konvergent)},
\]

\[
\sum_{n=1}^{\infty} \frac{3^n \cdot (n!)^2}{(2n)!} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3(n + 1)^2}{(2n + 1)(2n + 2)} = \frac{3}{4} < 1, \quad \text{(konvergent)},
\]

\[
\sum_{n=1}^{\infty} \frac{4^n \cdot (n!)^2}{(2n)!} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1, \quad \text{(divergent)}.
\]
L5

\[\sum_{n=1}^{\infty} \frac{(n+2)^{n+1}}{(-n)^{n}} = \sum_{n=1}^{\infty} \frac{(-1)^n (n+2)^n}{n^n} = \sum_{n=1}^{\infty} (-1)^n (n+2) \left(\frac{n+2}{n} \right)^n = \sum_{n=1}^{\infty} (-1)^n (n+2) \left(1 + \frac{2}{n} \right)^n, \]
\[\lim_{n \to \infty} |a_n| = \lim_{n \to \infty} (n+2) \left(1 + \frac{2}{n} \right)^n = e^2 \lim_{n \to \infty} (n+2) = \infty, \]

\[\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+1)^n} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cdot n^n \cdot n}{(n+1)^n} = \sum_{n=1}^{\infty} (-1)^{n+1} n \left(\frac{n}{n+1} \right)^n = \sum_{n=1}^{\infty} (-1)^{n+1} n \left(1 + \frac{1}{n} \right)^n, \]
\[\lim_{n \to \infty} |a_n| = \lim_{n \to \infty} n \left(1 + \frac{1}{n} \right)^n = \frac{1}{e} \lim_{n \to \infty} n = \infty, \]

\[\sum_{n=1}^{\infty} \frac{(-1)^n (n-4)^n}{n^n} = \sum_{n=1}^{\infty} (-1)^n \left(1 - \frac{4}{n} \right)^n, \quad \lim_{n \to \infty} |a_n| = \lim_{n \to \infty} \left(1 - \frac{4}{n} \right)^n = e^{-4} = \frac{1}{e^4} \neq 0, \]

\[\sum_{n=1}^{\infty} \frac{(n-5)^{n-2}}{(-n)^n} = \sum_{n=1}^{\infty} (-1)^n \frac{n}{(n-5)^2} \left(\frac{n-5}{n} \right)^n = \sum_{n=1}^{\infty} (-1)^n \frac{1}{(n-5)^2} \left(1 - \frac{5}{n} \right)^n, \]
\[\lim_{n \to \infty} |a_n| = \lim_{n \to \infty} \frac{1}{(n-5)^2} \left(1 - \frac{5}{n} \right)^n = e^{-5} \lim_{n \to \infty} \frac{1}{(n-5)^2} = 0 \quad \text{konvergent}, \]

\[\sum_{n=1}^{\infty} \frac{(-1)^n (n+3)^n}{n^n} = \sum_{n=1}^{\infty} (-1)^n \left(1 + \frac{3}{n} \right)^n, \quad \lim_{n \to \infty} |a_n| = \lim_{n \to \infty} \left(1 + \frac{3}{n} \right)^n = e^3 \neq 0. \]

Die Reihen a), b), c) und e) sind divergent. Die Reihe d) konvergiert.
\[
\sum_{n=1}^{\infty} \frac{n}{n^2 + 2}, \quad \sum_{n=1}^{\infty} \frac{n^2}{n^3 + 1} \geq \sum_{n=1}^{\infty} \frac{n}{n^2 + n^2} = \frac{n}{2n^2} = \frac{1}{2n} \quad \text{divergent},
\]
\[
\sum_{n=1}^{\infty} \frac{n^2}{n^3 + 1}, \quad \sum_{n=1}^{\infty} \frac{n^2}{n^3 + 1} \geq \sum_{n=1}^{\infty} \frac{1}{2n^3} = \frac{1}{2n} \quad \text{divergent},
\]
\[
\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{3}{5^{n-1} + 2n - 1}, \quad \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{3}{5^{n-1}}, \quad a_n \leq b_n : \frac{3}{5^{n-1} + 2n - 1} \leq \frac{3}{5^{n-1}},
\]
\[
b_{n+1} = \frac{3}{5^n} \cdot \frac{5^{n-1}}{3} = \frac{5^{-1}}{5} \leq 1 \quad \text{konvergent},
\]
\[
\sum_{n=1}^{\infty} \frac{n^2 - 5n}{n^3 + n + 1}, \quad \sum_{n=1}^{\infty} \frac{n^2 - 5n}{n^3 + n + 1} \geq \sum_{n=1}^{\infty} \frac{1}{3n^3 - \frac{5}{3n^2}} = \frac{1}{3n^3} - \frac{5}{3n^2} \quad \text{divergent},
\]
\[
\sum_{n=1}^{\infty} \frac{1 + \sin(n)}{10^n}, \quad \sum_{n=1}^{\infty} \frac{1 + \sin(n)}{10^n} \leq \sum_{n=1}^{\infty} \frac{2}{10^n} = 2 \cdot \left(\frac{1}{10}\right)^n = 2 \cdot (0.1)^n \quad \text{konvergent},
\]
\[
\sum_{n=1}^{\infty} \frac{\sin(n) + \cos(n)}{n^2}, \quad \sum_{n=1}^{\infty} \frac{\sin(n) + \cos(n)}{n^2} \leq \sum_{n=1}^{\infty} \frac{2}{n^2} \quad \text{konvergent},
\]

Die Reihen \(\sum_{n=1}^{\infty} 1/(n^2 + 2)\) und \(\sum_{n=1}^{\infty} n^2/(n^3 + 1)\) divergieren, da jeweils die harmonische Reihe \(\sum_{n=1}^{\infty} 1/n\) eine Minorante ist.

Die Reihe \(\sum_{n=1}^{\infty} 3/(5^{n-1} + 2n - 1)\) konvergiert, da ihre Majorante konvergiert.

Die Reihen \(\sum_{n=1}^{\infty} 1/n^2\) und \(\sum_{n=1}^{\infty} 1/n^3\) sind konvergent.

Die Reihe \(\sum_{n=1}^{\infty} 1/n\) ist divergent, die Reihe \(\sum_{n=1}^{\infty} 1/n^2\) ist konvergent, ihre Summe ist divergent.

Die geometrische Reihe \(\sum_{n=1}^{\infty} (0.1)^n\) konvergiert, da \(q = 0.1 < 1\).
L7

\[a_n = \frac{n - 3}{12n^2 - 3n + 5} \geq \frac{n - 3}{12n^2} = \frac{1}{12n} \quad \forall \ n \geq 3, \]
\[\sum_{n=2}^{\infty} \left(\frac{1}{12n} - \frac{1}{4n^2} \right) \text{ ist eine divergierende Minorante der Reihe } \sum_{n=2}^{\infty} \frac{n - 3}{12n^2 - 3n + 5}. \]

\[b_n = \frac{(n - 3)^2}{(n - 2)^2 (21n + 5)} \geq \frac{(n - 3)^2}{22n \cdot (n - 2)^2} = \frac{1}{22n} \cdot \left(\frac{1 - 3/n}{1 - 2/n} \right)^2 \quad \forall \ n \geq 5, \]
\[\frac{1}{22} \sum_{n=3}^{\infty} \frac{1}{n} \left(\frac{1 - 3/n}{1 - 2/n} \right)^2 \text{ ist eine divergierende Minorante der Reihe } \sum_{n=3}^{\infty} \frac{(n - 3)^2}{(n - 2)^2 (21n + 5)}. \]

\[c_n = \frac{2n^2 - 3}{5n^2 (3 + n)^2} \leq \frac{2n^2 - 3}{5n^4} = \frac{2}{5} \frac{n^2}{n^4} - \frac{3}{5} \quad \forall \ n \geq 1, \]
\[\frac{2}{5} \sum_{n=3}^{\infty} \frac{1}{n^2} - \frac{3}{5} \sum_{n=1}^{\infty} \frac{1}{n^3} \text{ ist eine konvergierende Majorante der Reihe } \sum_{n=1}^{\infty} \frac{2n^2 - 3}{5n^2 (3 + n)^2}. \]

\[d_n = \frac{11n + 8}{8n^3 - 2n + 21} \leq \frac{11n + 8}{7n^3} = \frac{11}{7} \frac{n}{n^2} + \frac{8}{7} \quad \forall \ n \geq 3, \]
\[\frac{11}{7} \sum_{n=1}^{\infty} \frac{1}{n^2} + \frac{8}{7} \sum_{n=1}^{\infty} \frac{1}{n^3} \text{ ist eine konvergierende Majorante der Reihe } \sum_{n=1}^{\infty} \frac{11n + 8}{8n^3 - 2n + 21}. \]

Die Reihen \(a \) und \(b \) sind divergent, die Reihen \(c \) und \(d \) sind konvergent.

L8

\[\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{1/2}} \text{ divergiert, da allgemeine harmonische Reihe mit } a < 1, \]
\[\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n + 5}} \quad \lim_{n \to \infty} \frac{1}{\sqrt{n + 5}} = 0 \quad (\text{LK, konvergiert}), \]
\[\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 5}} = \sum_{n=1}^{\infty} \frac{1}{n \sqrt{1 + 5/n^2}} \text{ divergiert wie allgemeine harmonische Reihe mit } a = 1, \]
\[\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{2n^2 + 8}} \quad \lim_{n \to \infty} \frac{1}{n \sqrt{2 + 8/n^2}} = 0 \quad (\text{LK, konvergiert}), \]
\[\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 12n}} = \sum_{n=1}^{\infty} \frac{1}{n^{3/2} \sqrt{1 + 12/n^2}} \text{ konvergiert wie allgemeine harmonische Reihe mit } a = \frac{3}{2} > 1. \]
L9
\[
\begin{align*}
\lim_{n \to \infty} (-3)^n & \text{ existiert nicht,} \\
\lim_{n \to \infty} \frac{n}{n+1} &= \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} = 1 \neq 0 \quad \text{(NK, divergiert),} \\
\lim_{n \to \infty} \sqrt[n]{\frac{1}{n-1}} &= \lim_{n \to \infty} \frac{1}{n-1} = 0 < 1 \quad \text{(WK, konvergiert),} \\
\lim_{n \to \infty} \frac{n^3}{3^n} &= \lim_{n \to \infty} \frac{\sqrt[3]{n^3}}{3} = \frac{1}{3} \left(\lim_{n \to \infty} \sqrt[n]{n} \right)^3 = \frac{1}{3} < 1 \quad \text{(WK, konvergiert),} \\
\cos^2(n) &\leq \frac{1}{3^n} = \left(\frac{1}{3} \right)^n = q^n, \quad q = \frac{1}{3} \quad \text{(MK, konvergiert),} \\
\sum_{n=1}^{\infty} \frac{1 + 3^n}{2^n} &= \sum_{n=1}^{\infty} \left(\frac{1}{2} + \frac{3^n}{2^n} \right) = \sum_{n=1}^{\infty} \frac{q^n + q^n}{2} = \sum_{n=1}^{\infty} q^n + \sum_{n=1}^{\infty} q^n = \frac{1}{2} < 1, \quad q_1 = \frac{3}{2} > 1 \quad \text{(divergent),}
\end{align*}
\]

L10
\[
\begin{align*}
\lim_{n \to \infty} \frac{1 - n^2}{n^2 + 5n} &= -1 \neq 0 \quad \text{(NK, divergiert),} \\
\lim_{n \to \infty} \frac{n(n+4)}{(2n+3)^2} &= \frac{1}{4} \neq 0 \quad \text{(NK, divergiert),}
\end{align*}
\]

L11
\[
\begin{align*}
a) \sum_{n=1}^{\infty} \frac{3n+7}{9+5n} \text{ existiert nicht,} \\
\lim_{n \to \infty} \frac{3n+7}{9+5n} &= \frac{3}{5} = \frac{3}{5} \neq 0 \quad \text{(NK, divergiert),} \\
b) \sum_{n=1}^{\infty} \frac{4^n}{(n!)^2}, \quad \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{4}{(n+1)^2} < 1, \quad \text{(QK, konvergiert),} \\
c) \sum_{n=1}^{\infty} \frac{3}{\sqrt{n^2 + 8n}}, \quad \frac{3}{\sqrt{n^2 + 8n}} \geq \frac{3}{\sqrt{n^2 + 8n^2}} = \frac{3}{\sqrt{9n^2}} = \frac{1}{n}, \quad \sum_{n=1}^{\infty} \frac{1}{n} \quad \text{(divergiert),} \\
\sum_{n=1}^{\infty} \frac{3}{\sqrt{n^2 + 8n}} \quad \text{(MK, divergiert)} \\
d) \sum_{n=1}^{\infty} \frac{5^n}{(3+2n)^n}, \quad \lim_{n \to \infty} \frac{5^n}{(3+2n)^n} = \lim_{n \to \infty} \frac{5^n}{3+2n} = 0 < 1 \quad \text{(WK, konvergiert).}
\end{align*}
\]