

http://farm3.static.flickr.com/2113/2505650309_b38311f93f.jpg?v=0

Differenzierbarkeit

Differenzierbarkeit einer Betragsfunktion: Aufgaben 2-7

Zeichnen Sie folgende Funktionen, ihre Ableitungen, und bestimmen Sie die Stellen, an denen die Funktionen nicht differenzierbar sind:

Aufgabe 2:
$$f(x) = |x - 2|$$

Aufgabe 3:
$$f(x) = 2 - |x|$$

Aufgabe 4:
$$f(x) = \frac{1}{2} |x^2 - 4| - 1$$

Aufgabe 5:
$$f(x) = x + 2$$
, $x < 1$
 $f(x) = -\frac{1}{2}(x - 1)^2 + 3$, $x \ge 1$

Aufgabe 6:
$$f(x) = -\frac{1}{2}(x-1)^2 + 3$$
, $|x-1| \ge 2$
 $f(x) = 1$, $|x-1| < 2$

Aufgabe 7:
$$f(x) = ||x| - 1| - 1$$

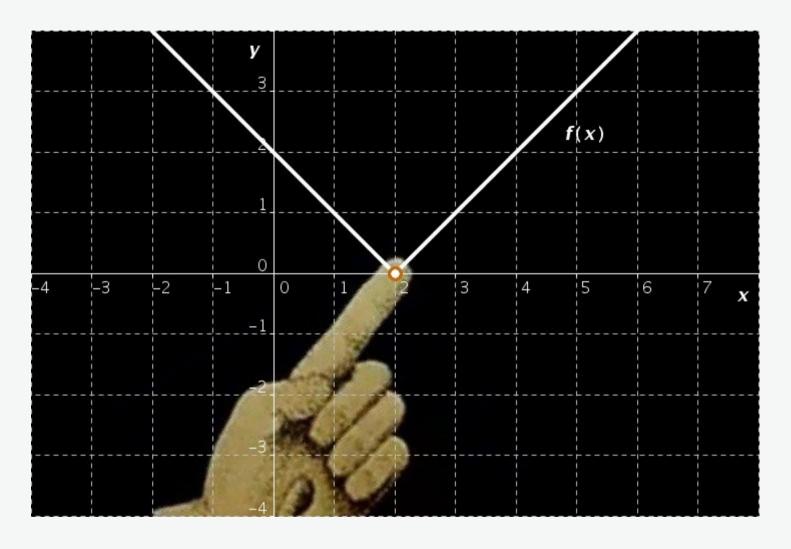


Abb. L2a: Die Betragsfunktion f(x) = |x-2|. Der Punkt (2, 0) ist die Knickstelle

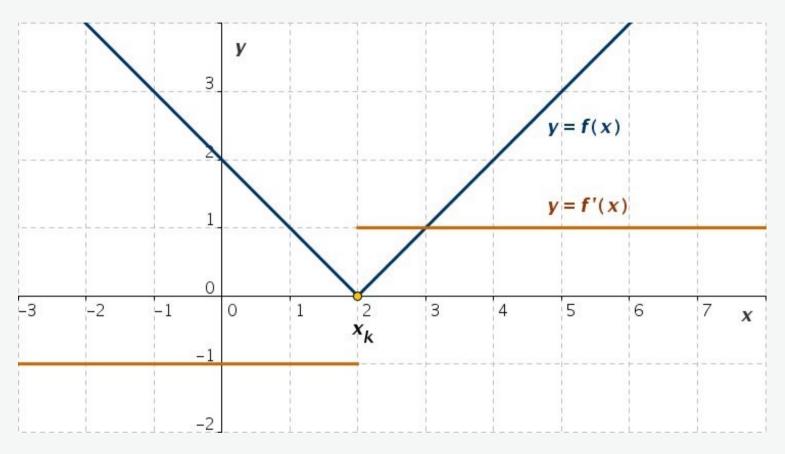


Abb. L2b: Die Betragsfunktion y = f(x) (blau) und ihre Ableitungsfunktion (rot)

$$x < 2$$
: $f(x) = 2 - x$, $x \ge 2$: $f(x) = x - 2$

$$x < 2$$
: $f'(x) = -1$, $x > 2$: $f'(x) = 1$

Die Funktion ist im Punkt x = 2 nicht differenzierbar.

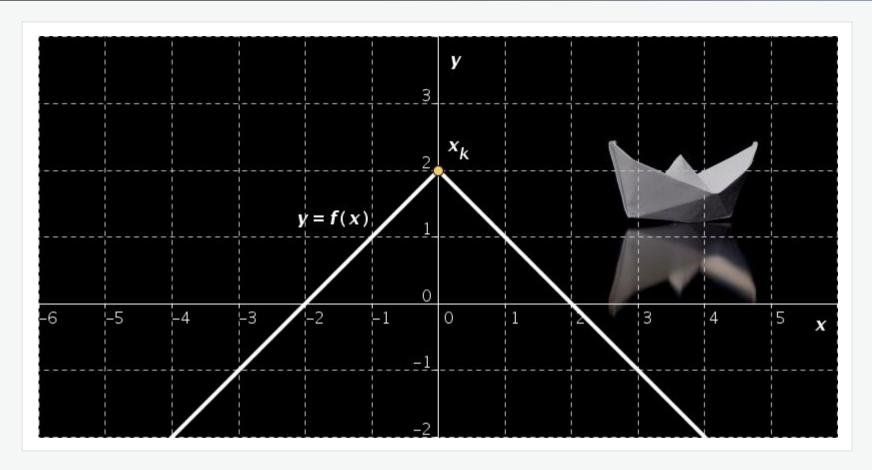


Abb. L3a: Die Betragsfunktion y = 2 - |x|

$$f(x) = 2 - |x|$$

 $x < 0$: $f(x) = 2 + x$, $x \ge 0$: $f(x) = 2 - x$

$$x < 0$$
: $f'(x) = 1$, $x > 0$: $f'(x) = -1$

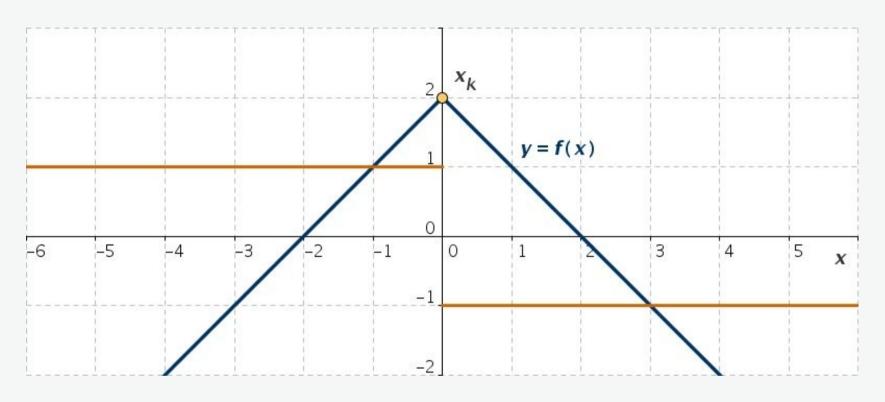


Abb. L3b: Die Betragsfunktion y = f(x) (blau) und ihre Ableitungsfunktion (rot)

Die Funktion ist im Punkt x = 0 nicht differenzierbar.

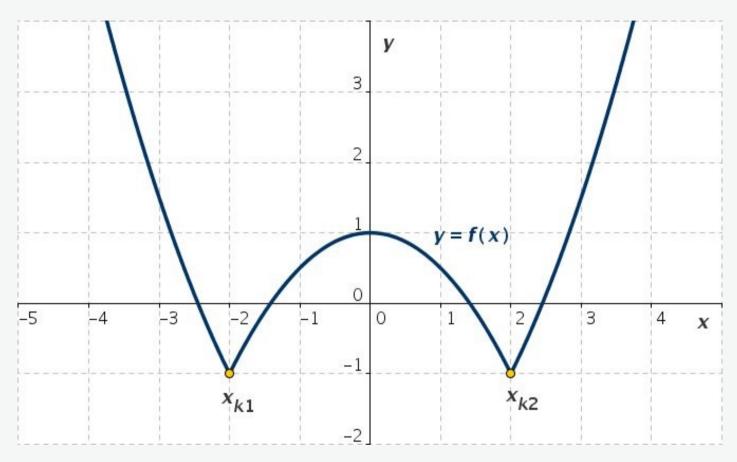


Abb. L4a: Die Betragsfunktion y = f(x)

$$f(x) = \frac{1}{2} |x^2 - 4| - 1$$

$$|x| \le 2 \quad : f(x) = 1 - \frac{x^2}{2}, \qquad |x| > 2 \quad : f(x) = \frac{x^2}{2} - 3$$

$$|x| < 2 : \quad f'(x) = -x, \qquad |x| > 2 : \quad f'(x) = x$$

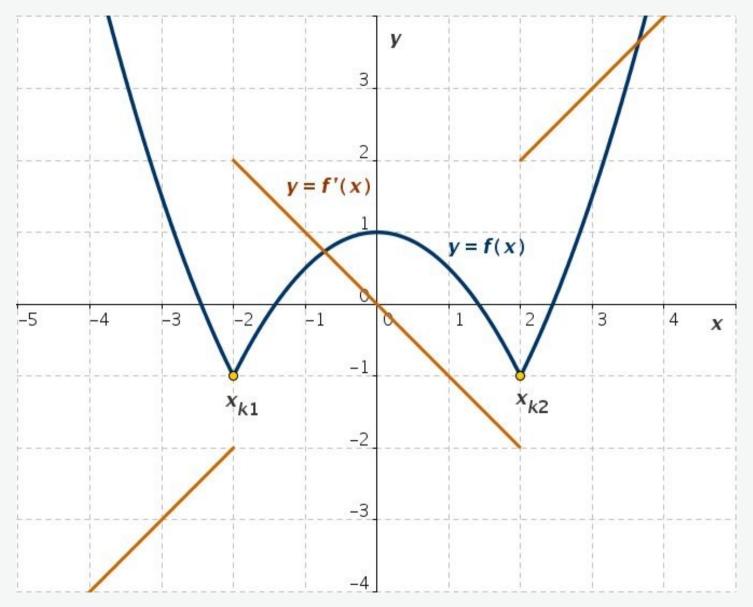


Abb. L4b: Die Betragsfunktion y = f(x) (blau) und ihre Ableitungsfunktion (rot)

Die Funktion ist in den Punkten x = -2 und x = 2 nicht differenzierbar.

Differenzierbarkeit einer zusammengesetzten Funktion: Lösung 5

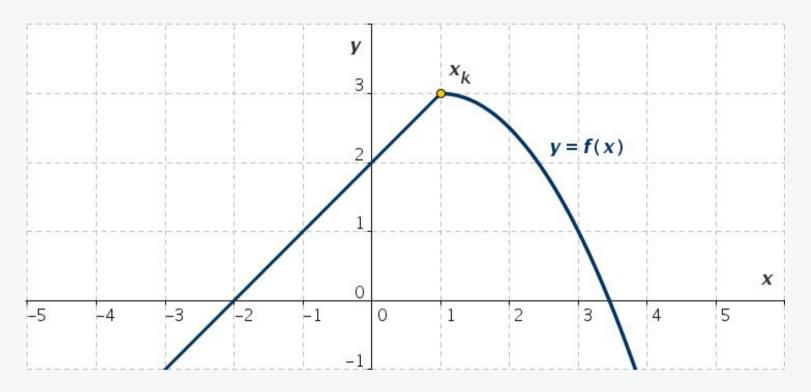


Abb. L5a: Die zusammengesetzte Funktion y = f(x) der Aufgabe

$$f(x) = x + 2,$$
 $x < 1$
 $f(x) = -\frac{1}{2}(x - 1)^2 + 3,$ $x \ge 1$
 $x < 1:$ $f'(x) = 1,$ $x > 1:$ $f'(x) = 1 - x$

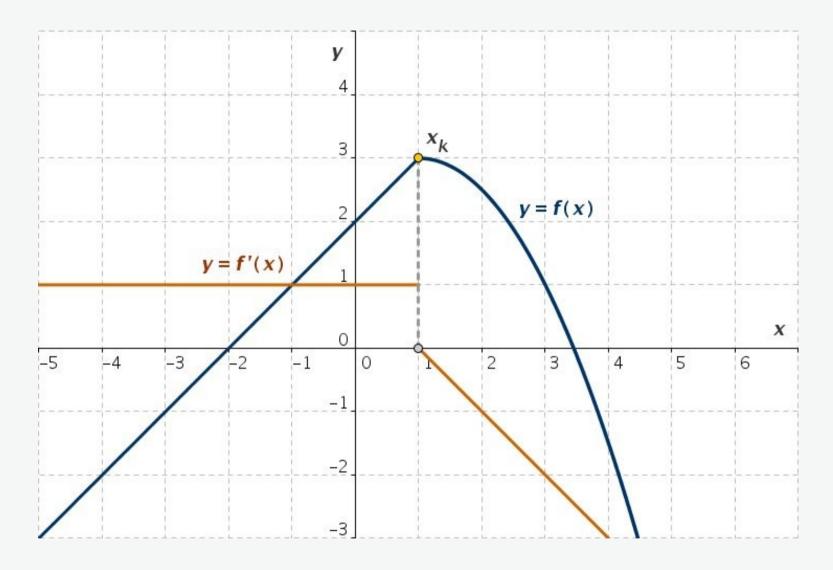


Abb. L5b: Die zusammengesetzte Funktion y = f(x) (blau) und ihre Ableitungsfunktion (rot)

Die Funktion ist im Punkt x = 1 nicht differenzierbar.

Differenzierbarkeit einer zusammengesetzten Funktion: Lösung 6

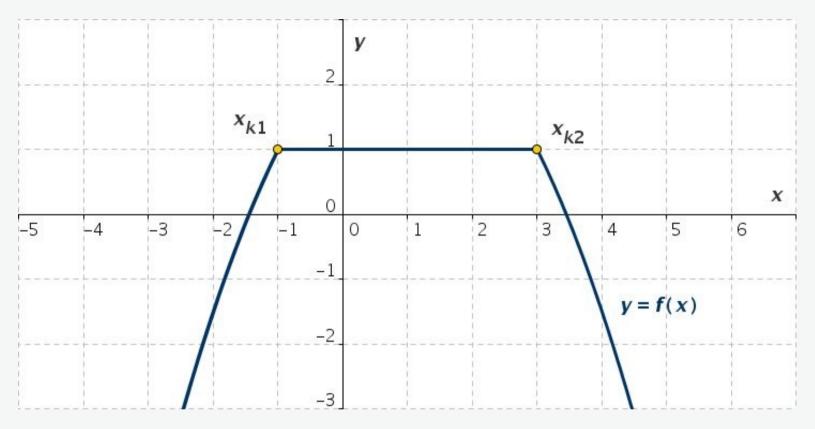


Abb. L6a: Die zusammengesetzte Funktion y = f(x) der Aufgabe

$$f(x) = -\frac{1}{2} (x - 1)^2 + 3, \quad |x - 1| \ge 2$$

 $f(x) = 1, \quad |x - 1| < 2$

$$|x-1| > 2$$
: $f'(x) = 1-x$, $|x-1| < 2$: $f'(x) = 0$

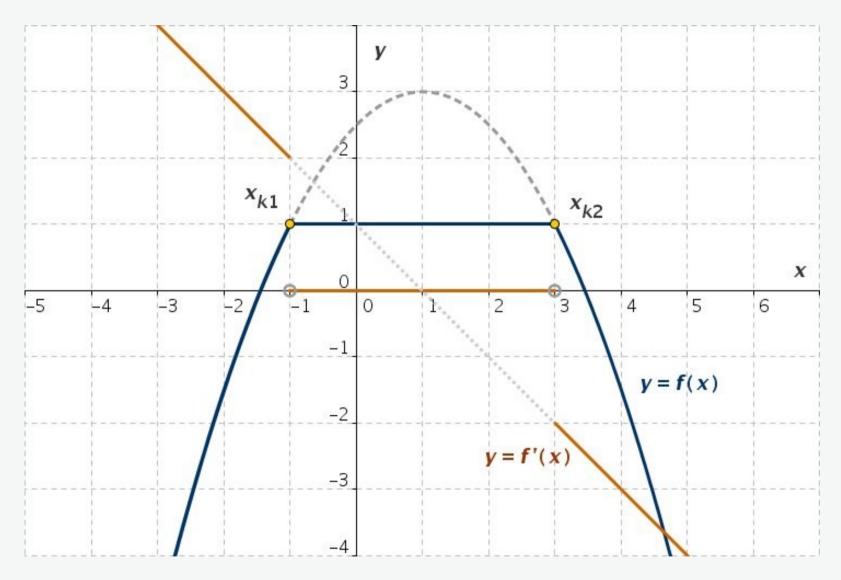


Abb. L6b: Die zusammengesetzte Funktion y = f(x) (blau) und ihre Ableitungsfunktion (rot)

Die Funktion ist in den Punkten x = -1 und x = 3 nicht differenzierbar.

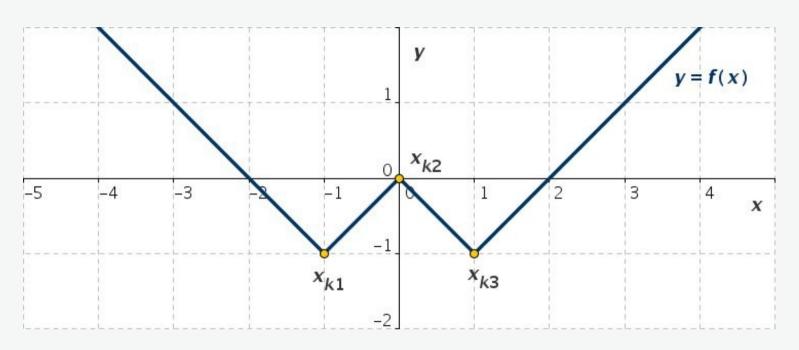


Abb. L7a: Die Betragsfunktion y = f(x)

$$f(x) = \left| \left| x \right| - 1 \right| - 1$$

1)
$$x \ge 0$$
: $f(x) = |x - 1| - 1$
 $0 \le x < 1$: $f(x) = -x$, $x \ge 1$: $f(x) = x - 2$

2)
$$x < 0$$
: $f(x) = |-x - 1| - 1$
 $-1 \le x < 0$: $f(x) = x$, $x < -1$: $f(x) = -x - 2$

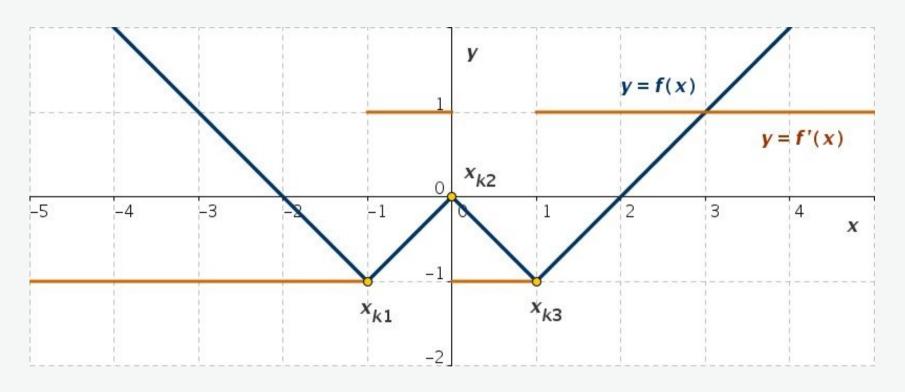


Abb. L7b: Die Betragsfunktion y = f(x) (blau) und ihre Ableitungsfunktion (rot)

$$x < -1$$
: $f'(x) = -1$, $-1 < x < 0$: $f'(x) = 1$

$$0 < x < 1$$
: $f'(x) = -1$, $x > 1$: $f'(x) = 1$

Die Funktion ist in den Punkten x = -1, 0, 1 nicht differenzierbar.

http://www.youtube.com/watch?v=WkvJsMBKXPg&NR=1

H.C. Andersen "Der standhafte Zinnsoldat"

Beschreiben Sie Funktionen und ihre nicht differenzierbare Stellen, die einen tapferen Zinnsoldaten auf dem Wasser halten.

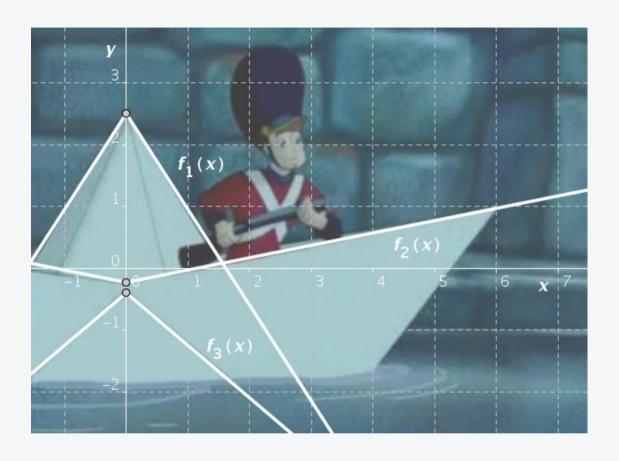


Abb. L8: Die Betragsfunktionen der Aufgabe

$$f_1(x) = -\left|\frac{3}{2}x\right| + \frac{5}{2}$$
, $f_2(x) = |0.2x| - 0.2$, $f_3(x) = -|0.85x| - 0.5$

Diese Funktionen sind im Punkt x = 0 nicht differenzierbar.